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Introduction

This work deals with the calculus of functional spaces, which generalizes the
classical tensor calculus on manifolds. Especially the spaces of functional s-forms
F
s, functional s-vectors Vs, and also mixed functional tensor spaces like the space

of functional (1, 1)-tensors F1 ⊗ V1 are introduced.

Functional spaces are of major importance in the formal theory of PDEs,
the simplest and well known examples being F0, F1 and V1. The space F0 is
nothing but the space of functionals, i.e. integrals of Lagrangians. The space
F1, also called the space of source forms, contains as a subspace the wide class
of Euler-Lagrange equations. The “dual” space V1, also called the space of
evolutionary or characteristic vector fields, was already known to Lie. But also
higher functional spaces appeared recently in a natural manner. The classical
Helmholtz conditions of the calculus of variations have been recognised to be
a functional 2-form, i.e. an element of F2. The Hamiltonian structures of
completely integrable evolution equations are functional 2-vectors, i.e. elements
of V2, and the Lenard type recursion operators are functional (1, 1)-tensors,
i.e. elements of F1 ⊗ V1. The most popular examples of such equations are the
Korteweg-de Vries, Boussinesq and nonlinear Schrödinger equation.

The formal setting for all these objects is the jet calculus. It has already been
used by Lie in an informal manner to have coordinates for partial derivatives
of all orders. For instance a vector field on a fibred manifold with components
depending not only on the original coordinates, but also on their formal deriva-
tives up to a certain order, is called generalized vector field. Details on fibred
manifolds and associated jet spaces will be introduced later. The jet language
will be freely used throughout this thesis. Good references are [And] and [Pom].

The first aim is to define functional spaces using a minimum of unfamiliar
language. We define higher functional forms as totally skew-symmetric matrix
differential operators, avoiding the introduction of differential forms1, appearing
in [And] and [Olv], to define them. We define functional multi-vectors and mixed
tensors in a similar fashion. This practically oriented rather than intrinsic defini-
tion yields a simple data structure for computer implementations and a concise

1For the connection between the operator approach adopted here (for all functional spaces)
and the differential form approach for functional 1- and 2-forms see [Olv], Propositions 5.87 &
5.88.
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notation for theoretical investigations. As opposed to the differential form ap-
proach it enables us to work with forms, multi-vectors and tensors on an equal
footing. Furthermore, even with the aid of the Leibniz product rule alone, we
are able to recursively determine the action of generalized infinitesimal transfor-
mations, i.e. the Lie derivative of generalized vector fields on these spaces, adding
to them the inner life stolen by our nonintrinsic definition. This is explicitly done
for all functional tensor spaces

⊗r
F1⊗

⊗s
V1 including the sub-cases Fs and Vs.

Algebraically speaking, the basic principle of this approach, namely the Leibniz

product rule, recursively turns these spaces into modules for the Lie algebra of
generalized vector fields, or equivalently for the Lie algebra of evolutionary vector
fields V1, starting with F0 and proceeding to higher order functional spaces.

The second and more ambitious aim is to construct in a straightforward man-
ner the so called Euler complex

0→ F
0 δ
→ F

1 δ
→ F

2 δ
→ F

3 δ
→ . . .

This is an infinite, locally exact sequence of spaces of functional forms, general-
izing the de Rahm complex from differential geometry.

In the new approach taken here one defines the Euler complex by assuming
the validity of the Cartan formula

LX = δ ιX + ιXδ

at each step, where LX : Fs → Fs is the Lie derivative along the generalized
vector field X and ιX : Fs+1 → Fs is the interior product with respect to X. This
suffices to recursively define the morphisms δ at each stage. At the same time it
automatically enforces2 the local exactness of the constructed sequence. The first
three steps of this recursion are explicitly carried out. The first operator δ = E :
F0 → F1 coincides with the Euler operator of the classical variational calculus.
The Euler complex owes its name to this fact. The second one δ = H : F1 → F2

reproduces the Helmholtz conditions of the variational calculus. It is called the
Helmholtz operator following [And]. The simple description of the space F3

and the recursive approach yields a description of the operator δ = T : F2 → F3.
I call it Takens operator.

The Euler sequence has an exact formal analogy with the de Rahm se-
quence, except that the former does not terminate and that there is no analogue
for the wedge product. Nevertheless, if we allow the number of independent vari-
ables to be zero, then both languages coincide. A functional is a function, a
functional form is a form, and so on. Further E becomes the gradient, H becomes
the curl, and so forth. The Euler complex is then precisely the de Rahm

complex.

2The integrated form of a Cartan formula is a homotopy formula expressing the local exact-
ness.
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The Euler complex appears naturally as the rightmost column of the vari-
ational bicomplex, which is avoided by this direct approach, but nevertheless a
central object in what I. M. Gel’fand called “formal differential geometry” in his
1970 address to the International Congress in Nice. It is a locally exact double
complex.

↑ δ ↑ δ ↑ δ

0 → Ω0,3 · · · Ωp,3

∫

M→ F3 → 0
↑ δ ↑ δ ↑ δ

0 → Ω0,2
D
→ Ω1,2

D
→ · · ·

D
→ Ωp−1,2 D

→ Ωp,2

∫

M→ F2 → 0
↑ δ ↑ δ ↑ δ ↑ δ ↑ δ

0 → Ω0,1
D
→ Ω1,1

D
→ · · ·

D
→ Ωp−1,1 D

→ Ωp,1

∫

M→ F1 → 0
↑ δ ↑ δ ↑ δ ↑ δ ↑ δ

0 → R → Ω0,0
D
→ Ω1,0

D
→ · · ·

D
→ Ωp−1,0 D

→ Ωp,0

∫

M→ F0 → 0
↑ ↑ ↑ ↑ ↑

0 → R → Ω0M
d
→ Ω1M

d
→ · · ·

d
→ Ωp−1

M

d
→ Ωp

M → 0
↑ ↑ ↑ ↑
0 0 · · · 0 0

Starting with a fibred manifold π : E → M over a p-dimensional base mani-
fold M one defines jets, contact forms and horizontal forms, and uses them to
introduce the spaces of graded differential forms Ωr,s = Ωr,s(π). In the above
diagram D denotes the total derivative and δ the vertical derivative, naturally
extended to differential forms. Their sum d = D+ δ is the exterior derivative on
the infinite jet space J∞(π). The bottom row is the classical de Rahm complex
of the base manifold M .

The terminology “variational bicomplex” is motivated by the above mentioned
facts that δ : F0 → F1 coincides with the Euler operator and δ : F1 → F2

reproduces the Helmholtz conditions of the calculus of variations. Nevertheless
there is a wide range of applications of the variational bicomplex that go far
beyond variational problems. For details see [And].

The variational bicomplex provides a way to intrinsically define Fs as the
quotient space Ωp,s/D(Ωp−1,s). Because the last D coincides with the divergence,
one could naturally identify the quotient map Ωp,s → Fs with the integral overM .
Due to this fact, one calls these spaces “functional” spaces. This approach is used
in [Olv]. An equivalent approch relying on a projection operator I : Ωp,s → Ωp,s

called the “interior Euler operator” and defining Fs := I(Ωp,s), i.e. as a subspace
of Ωp,s, can be found in [And].

In the dual context we define the Nijenhuis-Schouten bracket for func-
tional multi-vectors, generalizing the classical one. We use it to define the notion
of a Hamiltonian system of evolution equations. As we succeed to find a useful
normal form for functional 3-vectors, we can check the Hamiltonian condition
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in a direct manner. We further use the simple idea, that the Hamiltonian

structure of a Hamilton equation is, as a functional 2-vector, invariant under
the flow of the equation, to determine all Hamiltonian structures, up to a cer-
tain order, of some known nonlinear completely integrable differential equations.
Because we cannot parametrize the nonlinear space of Hamiltonian 2-vectors,
we instead compute the space of functional (2, 0)-tensors, invariant under the
flow, and then determine the Hamiltonian 2-vectors among them. Using these
results, recursion operators are easily constructed. This is the third and last aim
of this thesis.
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Chapter 1

Functional Spaces

1.1 Basic Definitions

Let E → M be a fibred manifold in p independent variables (xi) = (x1, . . . , xp)
and q dependent variables (uα) = (u1, . . . , uq) (cf. [Pom]). Let π∞M : J∞(E)→M
denote the infinite jet bundle having the jet variables (xi, uαJ) as coordinates, where
J = (J1, . . . , Jp) is an arbitrary multi-index1. So in the case of two independent
variables (x, y), the jet variable u is addressed by u(0,0), uy by u(0,1), and uxxy by
u(2,1).
Note that higher jet coordinates transform like derivatives, i.e. they transform
according to the chain rule, nevertheless they are not derivatives:

∂y

∂x
=

∂u

∂x
=

∂ux
∂x

=
∂uxx
∂x

= . . . =
∂ux
∂u

= . . . = 0.

Since global aspects do not play any role in this work, it suffices to express all
objects locally, i.e. in terms of a fixed coordinate system, provided one knows
how the objects transform under one parameter subgroups of transformations
(or more generally under coordinate changes of E). Since a one parameter sub-
group is determined by its infinitesimal transformation in the sense of Lie, it
suffices to consider infinitesimal transformations (i.e. Lie derivatives) of the ob-
jects, which is the philosophy adopted in this work. They have the advantage
of being linear operations compared to the highly nonlinear coordinate change
formulas, inheriting their nonlinearity from the repeated use of the chain rule.

Following [Olv], let A denote2 the space of differential expressions over E,
i.e. smooth real-valued functions of finitely many arbitrary jet variables. A jet
expression f = f(xi, uαJ) is abbreviated by f = f [u]. For example

f [u] = cos(x)
√

1 + u2y + yeu
2uxxy .

1[Olv] uses a different notion of multi-index: u(2) stands for uy and u(1,1,2) for uxxy.
2Depending on the context, A will stand for Ω0,0 or Ωp,0 in the language of the variational

bicomplex. Ωp,0 is the space of horizontal p-forms.
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12 CHAPTER 1. FUNCTIONAL SPACES

Throughout this work3

Di = Dxi :=
∂

∂xi
+ uαJ+1i

∂

∂uαJ
(1.1)

denotes the total derivative with respect to xi, i = 1, . . . , p, where J + 1i :=
(J1, . . . , Ji + 1, . . . , Jp). Further define

DJ := (D1)
J1 · · · (Dp)

Jp . (1.2)

By this one gets for example

uxxy = Dxuxy = Dyuxx = Dxxuy = Dxxyu =
Dxx(xuy)− 2uxy

x
.

A generalized vector field4 v is a vector field on E which may depend on higher
jet variables

v = ξi[u]
∂

∂xi
+ ηα[u]

∂

∂uα
.

The characteristic of a vector field v is a column Q ∈ Aq×1 defined by

Qα := ηα − uαi ξ
i. (1.3)

And conversely to each characteristic Q ∈ Aq×1 one associates a vector field

vQ := Qα ∂

∂uα
, (1.4)

called the evolutionary or characteristic vector field with characteristic Q. If Q is
the characteristic of a vector field v, then one calls vQ the characteristic vector
field associated to v and denotes it occasionally by vev.
Let for example (t, x) be the independent, and (u, v) the dependent variables. If

v = ∂t + vx∂u + (
1

3
uxxx +

8

3
uux)∂v,

then

Q =

(
Qu

Qv

)

=

(
vx − ut

1
3
uxxx +

8
3
uux − vt

)

,

and

vQ = (vx − ut)∂u + (
1

3
uxxx +

8

3
uux − vt)∂v.

For a characteristic vector field vQ the (infinite) prolongation is defined by

pr vQ := DJQ
α ∂

∂uαJ
. (1.5)

3The sum is always to be taken over equal upper and lower indices (summation convention).
4The word “generalized” is often skipped in the text.
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And for a generalized vector field v = ξi∂xi + ηα∂uα with characteristic Q one
defines

pr v := pr vQ + ξiDi. (1.6)

The prolongation formula arises as follows: A vector field on E generates a local
flow on E, which determines by chain rule a so-called prolonged local flow on
J∞(E), having the prolonged vector field as its infinitesimal transformation. Thus
the prolongation formula is nothing but the infinitesimal chain rule.
When applying generalized vector fields to differential expressions, one must first
prolong the vector field before applying it. Since the prolongation pr v is uniquely
determined by v and conversely v is a part of pr v, we shall identify them. Note,
the prolongation operator pr is R-linear and not A-linear.

For the above example one verifies

pr (1)vQ = (vx − ut)∂u + (
1

3
uxxx +

8

3
uux − vt)∂v

+(vtx − utt)∂ut + (
1

3
utxxx +

8

3
utux +

8

3
uutx − vtt)∂vt

+(vxx − utx)∂ux + (
1

3
uxxxx +

8

3
u2x +

8

3
uuxx − vtx)∂vx

and

pr (1)v = ∂t + vx∂u + (
1

3
uxxx +

8

3
uux)∂v

+vtx∂ut + (
1

3
utxxx +

8

3
utux +

8

3
uutx)∂vt

+vxx∂ux + (
1

3
uxxxx +

8

3
u2x +

8

3
uuxx)∂vx ,

where pr (k)v means the k-th prolongation of v, i.e. the prolongation up to the
partial derivatives w.r.t. jets of order at most k.

1.2 Functional Spaces

1.2.1 Definition (Total differential operator)
A total5 (matrix) differential operator is an operator of the form D = (P J

αβDJ)
(α = 1, . . . , r, β = 1, . . . , s, finite sum over J)

D :

{
Ar → As

(Tα)α 7→ (
∑r

α=1 P
J
αβDJTα)β

where P J
αβ = P J

αβ[u] ∈ A. The order of a differential operator is the largest
number m with at least one P J

αβ 6= 0 for |J | = m. Its jet order is the highest
order of a jet variable appearing in the coefficients P J

αβ of D.

5The word “total” is often dropped in the sequel.
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1.2.2 Remark
Ak stands for the space of k-tuples. At this stage, the position of the indices (α
and β being upper or lower) does not play a role. Once we identify Ak with either
the column space Ak×1 or the row space A1×k, then the index position matters
(see below). To apply a matrix differential operator to a row or a column T ,
one identifies T back with a column tuple, only to be able to interpret DT as a
matrix applied to a column.

1.2.3 Example
The following6 matrix operator E

E =

(

D3
x + (uDx +Dx · u) 3vDx + 2vx

3vDx + vx
1
3D

5
x +

5
3 (uD

3
x +D3

x · u)− (uxxDx +Dx · uxx) +
16
3 uDx · u

)

.

has order 5 and jet order 3.

For details and motivation of the below definitions see [Olv], Chapter 5, Sec-
tion 4.

1.2.4 Definition (Current)
A p-tuple A = (A1, . . . , Ap) ∈ Ap of differential expressions is called a current
or a horizontal (p − 1)-form7, where p is the number of independent variables
(x1, . . . , xp).

1.2.5 Definition (Divergence)
For a current A = (A1, . . . , Ap) the operator Div : Ap → A defined by

DivA := DiA
i (1.7)

is called the divergence operator.

1.2.6 Lemma (Integration by parts formula)
For a matrix differential operator D = (Dαβ) : Ar → As and for S ∈ As, there
exists a unique R ∈ Ar, such that for each Q ∈ Ar, there exists a current A ∈ Ap,
such that the following integration by parts formula holds8

S ·DQ = R ·Q+ DivA.

More explicitly, for Dαβ = P J
αβDJ and S = (Sβ) the unique R = (Rα) is given by

Rα =
∑

β

(−D)J(P
J
αβSβ),

where (−D)J := (−1)|J |DJ .

6Dx · u := Dx(u · )
7Ap stands for Ωp−1,0 in the language of the variational bicomplex.
8R ·Q :=

∑

αRαQα.
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Proof. Cf. [Olv], Section 5.3. ¤

1.2.7 Definition (Adjoint operator)
Using the notation of the above lemma, the map S 7→ R defines a total differential
operator D∗ = (D∗

βα) : As → Ar called the formal adjoint operator of D:

D
∗
βα := (−D)J(P

J
αβ · ).

Note, the adjoint of a matrix differential operator is the transposed of the matrix
where the adjoint operator is applied componentwise.

For example, if
D = Dxy + uyDx + uxy,

then its adjoint is

D
∗ = (−1)2DyDx + (−Dx)uy + uxy = Dxy − uyDx.

Every operator coincides with its double adjoint:

D
∗∗ = Dxy +Dxuy = Dxy + uyDx + uxy

1.2.8 Corollary (Integration by parts formula)
The integration by parts formula takes the form9

S ·DQ = D
∗S ·Q+ DivA. (1.8)

1.2.9 Definition (Self- and skew-adjointness)
An operator D is self-adjoint (resp. skew-adjoint), if D∗ = D (resp. D∗ = −D).

1.2.10 Example
The operator E of Example 1.2.3 (see also Example 4.3.14) is written in such a
manner, that its skew-adjointness becomes obvious.

The composition of two total differential operators is again a total differential
operator.

1.2.11 Lemma
Let D = P JDJ : A → A and E = M IDI : A → A be two differential operators.
Then

DE =
∑

K

(
I

K

)

P JDK(M
I)DI+J−K , (1.9)

where
(
I

K

)
:= I!

K!(I−K)!
in multi-index notation. The composition of two matrix

differential operators is the usual matrix product, where the multiplication of
entries is replaced by the composition (1.9).

9Cf. [Olv], Formula (5.77).



16 CHAPTER 1. FUNCTIONAL SPACES

Proof. This is a direct consequence of the Leibniz rule for total derivatives
Dxi and the fact that they commute pairwise. ¤

1.2.12 Example
For D = Dxxx+uDx+ux and E = Dxxx+

2
3
uDx+

1
3
ux one verifies for the product

operator

DE = D6x +
5

3
uD4x +

10

3
uxD

3
x + (3uxx +

2

3
u2)D2x

+(
5

3
uxxx +

5

3
uux)Dx + (

1

3
uxxxx +

1

3
uuxx +

1

3
u2x).

And for the adjoint operator D∗ = −Dxxx − uDx one verifies similarly

ED
∗ = −D6x −

5

3
uD4x −

10

3
uxD

3
x − (3uxx +

2

3
u2)D2x − (uxxx + uux)Dx.

See also Example 1.3.6.

1.2.13 Corollary
The adjoint of the product of two composable differential operators D,E satisfies

(DE)∗ = E
∗
D
∗. (1.10)

Proof. General integration by parts formula (1.8). ¤

1.2.14 Definition (Functionals, Lagrangians)
The space F0 defined locally10 by

F
0 := A/Div(Ap)

is called the space of functionals. In this context11, elements of A are called
Lagrangians. Lagrangians representing the same functional are called equivalent.

For example the two Lagrangians 1
2
u2x and −1

2
uuxx are one and the same func-

tional; they differ by Dx(
1
2
uux).

1.2.15 Definition (Functional 1-vectors)
By V1 we denote the space of evolutionary vector fields, or equivalently the space
of characteristics over a jet bundle. This space can be identified with Aq×1.
Its elements are also called functional vectors, or more elaborately functional 1-
vectors. For the components of a characteristic Q = (Qα) one uses an upper
index and calls the components contravariant.

10Two Lagrangians represent the same functional, if and only if their difference is locally a
divergence.
11Here A stands for Ωp,0: L ∈ A stands for the horizontal p-form Ldx1 ∧ . . . ∧ dxp.
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By D : V1 → Ar we mean an r × q-matrix12 of differential operators D =
(Dl

α)
l=1,...,r
α=1,...,q acting on characteristics via

(DQ)l = D
l
αQ

α, l = 1, . . ., r.

In order to define the F0-dual of V1 we need the following special case of the
integration by parts formula:

1.2.16 Corollary
For Q ∈ V1 and D : V1 → A there exists a current A ∈ Ap such that the following
integration by parts formula holds

DQ = D
∗(1) ·Q+ DivA, (1.11)

where D∗(1) = (D∗
1(1), . . . ,D

∗
q(1)) ∈ A1×q. This decomposition is unique13, in

the sense that if there exists a ∆ ∈ A1×q, such that for each Q ∈ V1, there exists
a current B ∈ Ap, such that DQ = ∆ ·Q+ DivB, then ∆ = D∗(1).

Proof. This is a special case of the general integration by parts formula (1.8)
and the uniqueness property of Lemma 1.2.6. ¤

For the example following 1.2.7, D∗(1) = 0, thus DQ must be a divergence for
all Q ∈ V1. Indeed DQ = DivA with A = (uyQ,DxQ), but also DQ = DivB with
B = (uyQ+DyQ, 0).

1.2.17 Corollary
A differential operator D : V1 → A viewed as differential operator D : V1 → F0

can be identified with a unique element in A1×q. Conversely any element ∆ ∈
A1×q defines via Q 7→ ∆ ·Q := ∆αQ

α a differential operator V1 → F0.

1.2.18 Definition (Source forms, Functional 1-forms)
The space F1 := Hom(V1,F0) := {D : V1 → F0| D total differential operator} is
called the F0-dual space of V1. It can be identified with A1×q. Its elements are
called source forms or functional forms, or more elaborately functional 1-forms.
For the components of a source form ∆ = (∆α) one uses a lower index and calls
the components covariant.

The integration by parts formula (1.11) states that the R-bilinear map

F1 × V1 → F0

(∆, Q) 7→ ∆ ·Q

is a natural F0-valued pairing14 of V1 and F1, thus (V1,F1) is a F0-pair, and we
write (V1)∗ ∼= F1 and (F1)∗ ∼= V1.

12The position of the index α for D and Q is important, whereas the position of l is yet
irrelevant.
13Although the current A, depending on D and Q, is not unique.
14A pairing means R-bilinear and nondegenerate.
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1.2.19 Definition (Functional tensor and wedge products)
Let X,Y,Xi ∈ {V

1,F1}, i = 1, . . ., r.

(i) The functional tensor product X ⊗ Y := Hom(X∗, Y ) is the set of all q× q-
matrix differential operators D : X∗ → Y .

(ii) The functional tensor product
⊗

iXi := Hom(X∗
1 , X

∗
2 , . . . , X

∗
r−2;Xr−1⊗Xr)

is the set of all R-multilinear maps

D :

{
X∗
1 ×X∗

2 × · · · ×X∗
r−2 → Xr−1 ⊗Xr

(S1, . . . , Sr−2) 7→ D(S1, . . . , Sr−2)

of the form

D(S1, . . . , Sr−2) = (a
J1...Jr−2,J
α1...αr−2,αβ

(Sα1
1 )J1 · · · (S

αr−2
r−2 )Jr−2DJ)αβ,

where (Sγ
i )I := DI(S

γ
i ) are total derivatives and the coefficients15 a

J1...Jr−2,J
α1...αr−2,αβ

are jet expressions, which uniquely determine D, but are also uniquely16 de-
termined by D. In the following D is denoted by its image D(S1, . . . , Sr−2)
for general S1, . . . , Sr−2.

(iii) The functional wedge product X2 = Λ2X is the set of all skew-adjoint
operators D ∈ X ⊗X.

(iv) The functional k-th wedge product Xk = ΛkX is the set of all operators
D ∈

⊗k X satisfying

(a) D(S1, . . . , Sk−2) ∈ X2

(b) D(S1, . . . , Si, . . . , Sk−2)Sk−1 = −D(S1, . . . , Sk−1, . . . , Sk−2)Si

for all i = 1, . . . , k − 2 and all Sj ∈ X∗, j = 1, . . . , k − 1.

The definition of the functional k-th symmetric product SkX is analogues. Ele-
ments of

⊗r
V1 ⊗

⊗s
F1 are called functional (r, s)-tensors. Vk = ΛkV1 (resp.

Fk = ΛkF1) is called the space of functional k-vectors (resp. functional k-forms).

1.2.20 Remark
X ⊗ Y is not the classical tensor product, but is rather a tensor product over
F0. This should not be interpreted in a classical manner either, since F0 has no
multiplication structure (p > 0); functional spaces are not modules over F0.

15For the coefficients a······ the multi-indices J , Ji’s are upper indices. The position of α and
β will be discussed in Remark 1.2.21. αi is an upper (resp. lower) index, if X∗

i
∼= F1 (resp.

X∗
i
∼= V1), i.e. it is always opposite to the position at the Si ∈ X∗

i .
16See the discussion below Example 1.2.22.
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1.2.21 Remark
The four spaces V1 ⊗V1, F1 ⊗ F1, F1 ⊗V1, and V1 ⊗ F1 are defined as the space
of q × q-matrix differential operators D : Aq → Aq. To apply such an operator,
identify F1 resp. V1 with the q-tuple space Aq and apply the matrix operator
from the left. Hence, as matrices one cannot optically distinguish the elements
of these four spaces. For D ∈ V1 ⊗ V1 (resp. F1 ⊗ F1, F1 ⊗ V1) one writes
D = (Dαβ) (resp. (Dαβ), (D

α
β)) to distinguish the first three of them. Since the

last two spaces are naturally isomorphic (cf. Corollary 2.8.4) there is no urgent17

need to distinguish their elements (see Section 2.8.) As usual, composition is
only possible if one sums over an upper and a lower index, e.g. two elements of
V1 ⊗ V1 are not composable.

1.2.22 Example
For T = (T u, T v) ∈ A2 the operator18

D = D(T ) =

(
−2vT vDx − vxT

v − vT v
x vT uDx + 2vT u

x + vxT
u

vT uDx − vT u
x 0

)

can be regarded as a functional (r, s)-tensor with r + s = 3. If one specifically
views it as a functional (3, 0)-tensor, i.e. an element of V1⊗V1⊗V1, (resp. (0, 3)-
tensor, i.e. an element of F1⊗F1⊗F1), then one can immediately verify the total
skew-adjointness properties appearing in (iv):

D(T )∗ = −D(T ), D(T )S = −D(S)T.

Thus D(T ) is even a functional 3-vector, i.e. an element of V3 (resp. functional
3-form, i.e. an element of F3). Cf. Example 3.5.7, where the above operator
appears naturally as a functional 3-form.
In contrast

E(T ) =

(
0 −T uT v

xDx

−T vDx − 2T v
x 2T uDx + T u

x

)

is not linear in T and therefore not a functional tensor.

One can use the general integration by parts formula (1.8) to justify the
definitions of functional spaces starting with more natural ones like

X ⊗ Y := Hom(X∗, Y ∗;F0),

where Hom(X∗, Y ∗;F0) denotes the space of bilinear total differential operators of
X∗×Y ∗ with values in F0, i.e. an operator D ∈ Hom(X∗, Y ∗;F0) depends linearly
on the components of the first (resp. second) argument and its total derivatives
and takes values in F0. More explicitly, D(S1, S2) = aJ1J2α1α2

(Sα1
1 )J1(S

α2
2 )J2 , where

the coefficients aJ1J2α1α2
are jet expressions uniquely determining D, but are not

17By using Dα
β and D α

β one can indeed distinguish them.
18Tα

J := DJT
α.
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uniquely determined by D. In this approach the space of functional k-forms
Fk can be easily defined as a subspace of operators D ∈ Hom(V1, . . . ,V1

︸ ︷︷ ︸

k

;F0)

satisfying

D(S1, . . . , Si, . . . , Sj, . . . , Sk) = −D(S1, . . . , Sj, . . . , Si, . . . , Sk),

for all 1 ≤ i < j ≤ k and all Sl ∈ V1, l = 1, . . . , k.
Note that this an identity between functionals, which expresses the drawback of
this “simpler” approach. One cannot directly check the vanishing of a functional,
making it hard to construct useful normal forms for the functional spaces. The
approach suggested in 1.2.19 eliminates this difficulty. As mentioned, one can use
the integration by parts formula to prove the equivalence19 of both definitions.

1.2.23 Definition (Contraction)
Let X,X1, . . . , Xr−1 ∈ {V

1,F1} be functional spaces. A contraction is one of the
following maps, which one denotes by 〈·, ·〉:

(i) A pairing F1 × V1 → F0; (∆, Q) 7→ ∆ ·Q := ∆αQ
α.

(ii) An action
{

(X1 ⊗ · · · ⊗Xr−2 ⊗ F1 ⊗Xr−1)× V1 → X1 ⊗ · · · ⊗Xr−1

(D(S1, . . . , Sr−2), R) 7→ D(S1, . . . , Sr−2)R
.

(iii) A composition
{

(X1 ⊗ · · · ⊗Xr−2 ⊗ F1 ⊗Xr−1)× (X ⊗ V1) → X1 ⊗ · · · ⊗Xr−1 ⊗X
(D(S1, . . . , Sr−2),R) 7→ D(S1, . . . , Sr−2)R

.

(iv) One of the above with F1 and V1 interchanged.

A contraction is thus a sum over lower and upper indices (for the multi-indices
Formula (1.9) is used). Further, a contraction involves only total derivatives.
Of course, one can also consider more general contractions with more than two
arguments, or where one sums over more than one pair of upper and lower indices;
these, however, do not occur in this thesis.

1.3 Basic Lemmas

We begin this section with the Fréchet derivative, which is the core part20 of the
vertical derivative mentioned in the introduction.
19One uses the integration by parts formula, to eliminate one multi-index: (J1 . . . Jr) →

(J1 . . . Jr−2, J). This yields the uniqueness of the coefficients (cf. Definition 1.2.19, (ii)).
20In the language of the variational bicomplex: δA = ∂A

∂uα
J
δuαJ = (DA)αδu

α for A ∈ A ≡ Ω0,0,

with the contact forms δuαJ := duαJ − uαJ+1idx
i. The Fréchet derivative applied to (new)

linearised dependent variables (v1, . . . , vq) yields the linearised equations for the vertical space
Rq = V (Rq) in the language of [Pom], p. 83.
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1.3.1 Definition (Fréchet derivative)
For T ∈ Ar the differential operator DT : V1 → Ar defined by

DT = (
∂T

∂u1J
DJ , . . . ,

∂T

∂uqJ
DJ) (1.12)

is called the Fréchet derivative of T .

1.3.2 Example
1. The Fréchet derivative of the characteristic R = uxxx + uux is

DR = Dxxx + uDx + ux.

2. The Fréchet derivative of the characteristic

Q =

(
vx − ut

1
3
uxxx +

8
3
uux − vt

)

is the 2× 2-matrix differential operator

DQ =

(
−Dt Dx

1
3
Dxxx +

8
3
uDx +

8
3
ux −Dt

)

.

We first note the following two basic formulas. The first one relates the
prolongation of an evolutionary vector field and the Fréchet derivative:

pr vQ(T ) = DTQ, (1.13)

for all T ∈ Ar and Q ∈ V1. The proof follows immediately from the prolongation
formula (1.5) and the definition of the Fréchet derivative (1.12). The second
formula is the standard Leibniz product rule

pr v(L · P ) = pr vL · P + L · pr vP (1.14)

where v is a generalized vector field and L, P are arbitrary differential expressions.
It just expresses the fact, that a vector field is a derivation.

1.3.3 Lemma ([Olv], Lemma 5.12)
For P ∈ A and R ∈ V1 the following commutation rule holds

pr vR(DiP ) = Di(pr vRP ). (1.15)

Proof. From the simple commutation relation

∂

∂uαJ
(DiP ) = Di(

∂P

∂uαJ
) +

∂P

∂uαJ−1i
,
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we get

pr vR(DiP )
(1.5)
= DJ(R

α)
∂

∂uαJ
(DiP )

= DJ(R
α)Di(

∂P

∂uαJ
) +DJ(R

α)
∂P

∂uαJ−1i

= DJ(R
α)Di(

∂P

∂uαJ
) +DiDJ(R

α)
∂P

∂uαJ
= Di(pr vRP ).

¤

1.3.4 Definition (Directional derivative)
Let D = P JDJ : A → A be a differential operator and Q ∈ V1. The directional
derivative21 pr vQ(D) with respect to the evolutionary vector field vQ is defined
by

pr vQ(D) = pr vQ(P
J)DJ . (1.16)

The directional derivative of a matrix differential operator is the matrix of the
directional derivatives of the entries.

1.3.5 Lemma
The directional derivative of a differential operator is defined in such a way, that
the following Leibniz rule22 for operators holds:

pr vQ(DT ) = pr vQ(D)T + Dpr vQ(T ), (1.17)

or equivalently by (1.13)

DDT (Q) = pr vQ(D)T + DDTQ, (1.18)

for arbitrary differential operators D : Ar → As and T ∈ Ar. This property
uniquely determines the directional derivative of a differential operator.

Proof. This is a direct consequence of Formula (1.15) and the standard
Leibniz rule (1.14). ¤

1.3.6 Example
For R = uxxx + uux and E := Dxxx +

2
3
uDx +

1
3
ux one verifies that

pr vR(E) = (
2

3
uxxx +

2

3
uux)Dx + (

1

3
uxxxx +

1

3
uuxx +

1

3
u2x).

Using the calculations of Example 1.2.12 we have just verified

pr vR(E)− DRE− ED∗R = 0.

Cf. Theorem 4.2.4 and Example 4.3.13.

21I deliberately avoid calling pr vQ(D) a Lie derivative, as suggested in [Olv].
22[Olv], Formula (5.38).
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1.3.7 Remark
If in the following the differential operator is not specified any further, then the
statement is valid for the general case.

1.3.8 Corollary
For two composable differential operators D,E we have the following Leibniz rule:

pr vQ(D · E) = pr vQD · E + D · pr vQE. (1.19)

Proof. Apply Formula (1.17) twice. ¤

1.3.9 Definition (Directional derivative of functional tensors)
Let D(S1, . . . , Sr−2) = (a

J1...Jr−2,J
α1...αr−2,αβ

(Sα1
1 )J1 · · · (S

αr−2
r−2 )Jr−2DJ)αβ be a functional

r-tensor and Q ∈ V1. The directional derivative23 pr vQ(D) is defined by

pr vQ(D)(S1, . . . , Sr−2) =

(pr vQ(a
J1...Jr−2,J
α1...αr−2,αβ

)(Sα1
1 )J1 · · · (S

αr−2
r−2 )Jr−2DJ)αβ. (1.20)

1.3.10 Lemma
For a differential operator D and R ∈ V1 the following commutation rule holds

pr vR(D
∗) = pr vR(D)∗. (1.21)

Proof. Without loss of generality D = P JDJ (P J ∈ A). By using Lemma
1.3.5, we obtain

pr vR(D
∗) = pr vR((−1)

|I|DI(P
I · ))

(1.9)
=

∑

J

(−1)|I|pr vR(

(
I

J

)

DJ(P
I)DI−J)

(1.15)
=

∑

J

(−1)|I|
(
I

J

)

DJ(pr vR(P
I))DI−J

= (−1)|I|DI(pr vR(P
I) · )

= pr vR(D)∗.

¤

The following two lemmas are the key tools in this work. They describe the
interaction between the prolongation operation and the Fréchet derivative. The
first one is simpler and is a part of the proof of the second.

1.3.11 Lemma (First key lemma)
For L ∈ A and R,S ∈ V1 the following differential expressions coincide:

pr vR(DL)S = pr vS(DL)R. (1.22)

23It can be viewed as a trivial Lie derivative.
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Proof.

pr vR(DL)S = DI(R
α)

∂2L

∂uαI ∂u
β
J

DJ(S
β)

= pr vS(DL)R.

¤

1.3.12 Lemma (Second key lemma)
For L, P ∈ A the operator24 pr v·(D

∗
L)P : V1 → F1;R 7→ pr vR(D

∗
L)P is self-

adjoint:

(pr v·(D
∗
L)P )∗ = pr v·(D

∗
L)P (1.23)

Proof. Using the two previous lemmas, we get for arbitrary R,S ∈ V1 the
following identities of functionals

pr vR(D
∗
L)P · S

(1.21)
= pr vR(DL)

∗P · S
(1.8)
= P · pr vR(DL)S
(1.22)
= pr vS(DL)R · P
(1.21)
= R · pr vS(D

∗
L)P.

¤

As a corollary we get the following important formula:

1.3.13 Corollary ([Olv], Formula (5.60))
For L ∈ A and R ∈ V1

Dpr vR(L) = pr vR(DL) + DLDR. (1.24)

Proof. For an arbitrary S ∈ V1 we have

Dpr vR(L)S
(1.13)
= DDLRS

(1.18)
= pr vS(DL)R + DLDRS
(1.22)
= pr vR(DL)S + DLDRS.

¤

For those of the above results that also appear in [Olv], proofs are provided if
they are omitted in the book, or if the proof given here is more simpler or more
direct. The above definition of higher functional spaces and at least the second
key lemma seem to be new.

24In [GDo1], p. 257, pr v·(H) is called the Fréchet derivative of the operator H and denoted
by DH: (DH∆)(Q) = pr vQ(H)∆.



Chapter 2

The Lie Derivative and Lie
Module Structures

2.1 Leibniz Rule

2.1.1 Definition (Lie derivative)
For a generalized vector field v a Lie derivative Lv satisfies the following prop-
erties1:

(i) The Lie derivative is R-linear and preserves the type of functional tensors,
i.e. if it is defined for a functional space X, then it carries elements of X to
elements of X, more precisely Lv : X → X.

(ii) If X, Y and Z are functional spaces, and 〈·, ·〉 : X×Y → Z is a contraction,
then the Lie derivative satisfies the Leibniz rule

Lv〈a, b〉 = 〈Lva, b〉+ 〈a,Lvb〉, (2.1)

for all a ∈ X and b ∈ Y .

(iii) For all functional spaces X for which a Lie derivative is defined, the Lie
derivative defines an R-bilinear map

〈·, ·〉 :

{
V1 ×X → X
(R, a) 7→ LvRa

(2.2)

satisfying (2.1). Let us call it a non-total contraction2.

1Note, properties (i) and (ii) are also satisfied for covariant derivatives ∇v. It is condition
(iii) that enforces the uniqueness of the Lie derivative; it can also be written as Lv(L) = 0.

2Although it is not a contraction in the sense of Definition 1.2.23. It may be regarded as a
“generalized” contraction.

25
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The philosophy of this chapter is to utilize the above properties of the Lie deriva-
tive, to recursively define a V1-Lie module structure for all functional tensor
spaces, where the functional space V1 will be endowed with a Lie algebra struc-
ture.

2.1.2 Remark (Non-total contraction)
Combining (ii) and (iii) one gets LvLvRa = Lv〈R, a〉 = 〈LvR, a〉 + 〈R,Lva〉
= LvLvR

a+ LvRLva. Hence for all a ∈ X

[Lv,LvR ] a = LvLvR
a. (2.3)

2.1.3 Lemma
For two generalized vector fields v and w the commutator [Lv,Lw] of the Lie
derivatives Lv and Lw satisfies the above conditions (i) and (ii).

Proof. (i) is obvious. For (ii) take a ∈ X and b ∈ Y arbitrary. Then

〈LvLwa, b〉 = 〈Lv(Lwa), b〉
(2.1)
= Lv〈Lwa, b〉 − 〈Lwa,Lvb〉
(2.1)
= Lv(Lw〈a, b〉 − 〈a,Lwb〉)− 〈Lwa,Lvb〉
(2.1)
= LvLw〈a, b〉 − 〈a,LvLwb〉 − 〈Lva,Lwb〉 − 〈Lwa,Lvb〉

and hence

〈[Lv,Lw]a, b〉 = [Lv,Lw]〈a, b〉 − 〈a, [Lv,Lw]b〉. (2.4)

This is the elementary proof of the well-known fact, that the commutator of two
derivations is again a derivation. ¤

2.2 Functionals

In this section the behaviour of functionals (functional 0-forms) under infinitesi-
mal transformations is studied.

2.2.1 Lemma ([Olv], Formula (4.15))
A Lagrangian L ∈ A transforms infinitesimally according to the rule

LvL = pr vL+ LDiv(ξ), (2.5)

where v = ξi ∂
∂xi

+ ηα ∂
∂uα

is a generalized vector field3 and Lv is the Lie derivative
with respect to v.

3[Olv] proves this for point vector fields only. His proof uses the fact, that L is an “integrand”,
or more precisely a horizontal p-form Ldx1 ∧ . . . ∧ dxp, and the fact that a vector field is a
derivation. The above Lie derivative coincides with the notion of projected Lie derivative L]

v

for (p, 0)-forms (i.e. horizontal p-forms) introduced in [And], Chapter 3.
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Proof. [Olv], Theorem 4.12. ¤

2.2.2 Corollary (Lie derivative of functionals)
For a Lagrangian L viewed as an element of F0, i.e. as a functional, the Lie
derivative Lv : F0 → F0 with respect to a generalized vector field v is given by

LvL = pr vQL (2.6)

where Q is the characteristic of v. One also says that the functional L transforms
infinitesimally according to the above rule.

Proof.

LvL
(2.5)
= pr vL+ LDiv(ξ)
(1.6)
= pr vQL+ ξiDiL+ LDiξ

i

= pr vQL+ Div(Lξ)

= pr vQL,

where the last equality is one between functionals. ¤

2.2.3 Corollary
For a Lagrangian L viewed as an element of F0, the Lie derivatives Lv and LvQ

coincide.

2.2.4 Axiom
We declare Formula (2.6) an axiom. It is the starting point to recursively de-
termine the Lie derivative, or algebraically speaking, the V1-Lie module structure
for all functional tensor spaces.

2.2.5 Definition (Variational symmetry)
For a Lagrangian L ∈ A a generalized vector field v = ξi∂xi + ηα∂uα is called a
variational symmetry, if

LvL = pr vL+ LDiv(ξ) = 0 (2.7)

in A.

2.2.6 Definition (Bessel-Hagen symmetry)
For a functional L ∈ F0 a generalized vector field v with characteristic Q is called
a Bessel-Hagen symmetry or divergence symmetry, if

LvL = pr vQL = 0 (2.8)

in F0, i.e. if there exists a current B ∈ Ap, such that

pr vQL = Div(B) (2.9)

in A.
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2.2.7 Corollary
The Bessel-Hagen symmetries of a functional L ∈ F0 form a Lie subalgebra of
the Lie algebra of generalized vector fields.

Proof. This will follow from Formula (2.17). ¤

2.3 Characteristics

In this section we study the behaviour of characteristics (functional 1-vectors)
under infinitesimal transformations.

2.3.1 Proposition ([Olv], Proposition 5.15)
(a) The commutator of two prolonged evolutionary vector fields is again a pro-
longed evolutionary vector field. More precisely,

[pr vQ1 , pr vQ2 ] = pr vQ3 , (2.10)

with

Q3 = pr vQ1Q2 − pr vQ2Q1. (2.11)

(b) The commutator of two prolonged generalized vector fields pr v1, pr v2 is again
a prolonged generalized vector field pr v3, with

v3 = {pr v1(ξ
i
2)− pr v2(ξ

i
1)}

∂

∂xi
+ {pr v1(η

α
2 )− pr v2(η

α
1 )}

∂

∂uα
.

If Q1 (resp. Q2) is the characteristic of v1 (resp. v2), then v3 has the characteristic
Q3 given by the above formula.

Proof. (a) Let L be an arbitrary differential function, then

[pr vQ1 , pr vQ2 ](L) = pr vQ1(pr vQ2L)− pr vQ2(pr vQ1L)
(1.13)
= pr vQ1(DLQ2)− pr vQ2(DLQ1)
(1.17)
= pr vQ1(DL)Q2 + DLpr vQ1Q2

−pr vQ2(DL)Q1 − DLpr vQ2Q1
(1.22)
= DLpr vQ1Q2 − DLpr vQ2Q1
(1.13)
= pr vpr vQ1Q2−pr vQ2Q1

L.

(b) follows from (a) and Formula (1.6). ¤

2.3.2 Remark
The above proposition enables us to define the Lie bracket directly on evolutionary
(resp. generalized) vector fields

[vQ1 ,vQ2 ] = vQ3 (resp. [v1,v2] = v3),

with Q3 (resp. v3) as above.
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2.3.3 Theorem (Leibniz rule)
For every generalized vector field v there exists one and only one operator Lv :
V1 → V1 satisfying the Leibniz rule

Lv〈R,L〉 = 〈LvR,L〉+ 〈R,LvL〉, (2.12)

for all R ∈ V1 and L ∈ F0, where

〈R,L〉 := LvRL. (2.13)

Proof. Using the reformulated Leibniz rule (2.3) for the non-total contraction
(2.13) one obtains

pr vLvR

(2.6)
= LvLvR

(2.3)
= [Lv,LvR ]

(2.6)
= [pr vQ, pr vR], (2.14)

where Q is the characteristic of v. Finally the two formulas (2.10) and (2.11)
yield LvR = pr vQR− pr vRQ. ¤

2.3.4 Definition (Lie derivative of functional 1-vectors)
Let v be a generalized vector field with characteristic Q, and R an arbitrary
characteristic, i.e. R ∈ V1. The Lie derivative of R with respect to v is given by

LvR = pr vQR− pr vRQ
(1.13)
= pr vQR− DQR. (2.15)

If one defines4 LvvR := vLvR then by (2.10), (2.11) and Remark 2.3.2

LvvR = [vQ,vR]. (2.16)

One also says that the characteristic R (resp. evolutionary vector field vR) trans-
forms infinitesimally according to the above rule.

2.3.5 Corollary
On V1, both Lie derivatives Lv and LvQ coincide.

Proof. Deliberately, the proof given here does not make use of the special
form of Lv on F0, but solely of the obvious fact that the map Q 7→ LvQ on F0 is

injective. As in Formula (2.14) one obtains LvLvR

(2.3)
= [Lv,LvR ]

2.2.3
= [LvQ ,LvR ]

(2.3)
= LvLvQ

R
. By the mentioned injectivity the proof is done. ¤

2.3.6 Remark
The above results show that on F0, and therefore on V1, the Lie derivatives Lv

and LvQ coincide. Out of these two spaces we constructed all functional spaces,
thus both Lie derivatives will coincide for all these spaces. So we should omit
Lv in future. For the case of functional spaces Fs this fact is proved in [And],
Chapter 3: L

\
X = L

\
Xev

.

4Here vR is viewed as an evolutionary and not merely as a generalized vector field.
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2.3.7 Corollary
The Lie derivative L : vQ 7→ LvQ = pr vQ on F0 satisfies the following rule:

L[vQ1 ,vQ2 ]
= [LvQ1

,LvQ2
]. (2.17)

In light of the next proposition, this asserts that Lie derivative is a Lie algebra
homomorphism, turning F0 into a module for the Lie algebra V1.

Proof. The proof is done by (2.16) and (2.3) for X = F0. ¤

As required by (2.3), the Lie derivative will turn out to be a Lie algebra ho-
momorphism for all functional spaces. This is the infinitesimal version of the
associativity of coordinate changes.

2.3.8 Proposition
The Lie derivative L : vQ 7→ LvQ = pr vQ−DQ on V1 satisfies the following rule:

L[vQ1 ,vQ2 ]
= [LvQ1

,LvQ2
]. (2.18)

This is precisely the Jacobi identity for the Lie bracket

[[vQ1 ,vQ2 ],vQ3 ] = [vQ1 , [vQ2 ,vQ3 ]]− [vQ2 , [vQ1 ,vQ3 ]],

and Q3 being an arbitrary characteristic. Hence, the Lie bracket turns V1 into a
Lie algebra. The Lie derivative L becomes a Lie algebra homomorphism.

Proof. For the non-degenerate5 contraction (2.13)

V
1 × F

0 → F
0

(R,L) 7→ 〈R,L〉

one verifies

〈[LvQ1
,LvQ2

]R,L〉
(2.4),(2.12)

= [LvQ1
,LvQ2

]〈R,L〉 − 〈R, [LvQ1
,LvQ2

]L〉

(2.17)
= L[vQ1 ,vQ2 ]

〈R,L〉 − 〈R,L[vQ1 ,vQ2 ]L〉

(2.12)
= 〈L[vQ1 ,vQ2 ]R,L〉.

There is of course a direct proof, which does not make use of the more elegant
Leibniz principle for Lie derivatives. Let pr vQ = [pr vQ1 , pr vQ2 ], then

LvQ

(2.15)
= pr vQ − DQ

(2.11)
= [pr vQ1 , pr vQ2 ]− Dpr vQ1Q2−pr vQ2Q1

5We make use of this fact for the first argument only.
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(1.24)
= [pr vQ1 , pr vQ2 ]− pr vQ1(DQ2)− DQ2DQ1 + pr vQ2(DQ1) + DQ1DQ2

(1.17)
= [pr vQ1 , pr vQ2 ]− pr vQ1DQ2 + DQ2pr vQ1 − DQ2DQ1

+pr vQ2DQ1 − DQ1pr vQ2 + DQ1DQ2

= [pr vQ1 − DQ1 , pr vQ2 − DQ2 ]

= [LvQ1
,LvQ2

].

¤

For every formula of this type, there are two different proofs. The first one
uses the Leibniz principle, emphasising the axiomatic approach followed in this
thesis. The second proof uses the calculus developed in Chapter 1 and is given
here to familiarise the reader with that calculus. This is done one further time
(cf. Proposition 2.4.4).

2.3.9 Lemma
The map v 7→ vQ is a Lie algebra homomorphism from the Lie algebra of gen-
eralized vector fields onto V1. The kernel consists of all total vector fields, i.e.
vector fields of the form ξiDi, with ξi ∈ A (i = 1, . . . , p).

Proof. The is precisely the last statement of (b) in Proposition 2.3.1. ¤

2.3.10 Definition (Evolutionary symmetry)
Let P ∈ V1 and ut = P be an evolution equation. Q ∈ V1 is called evolutionary
symmetry of ut = P , if

LvQP = 0. (2.19)

2.3.11 Corollary
The evolutionary symmetries of an evolution equation ut = P form a Lie subal-
gebra of the Lie algebra of generalized symmetries of the evolution equation.

Proof. This follows from Proposition 2.3.8. ¤

The following easy lemma will be used to proof a criterion for recursion operators
(Corollary 4.3.3).

2.3.12 Lemma (Symmetries of evolution equations)
Let P ∈ V1. The evolutionary vector field vQ is a symmetry of the evolution
equation6 ut = P , if and only if

LvPQ = 0. (2.20)

Proof. The proof is done by LvPQ = −LvQP and the definition of evolu-
tionary symmetries. ¤

See also [Olv] Proposition 5.19, for a time dependent version.

6Neither P nor Q depend on t or any time derivative of u = (u1, . . . , uq).
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2.4 Source Forms

In this section the behaviour of functional 1-forms under infinitesimal transfor-
mations is studied. Functional 1-forms are also called source forms7.

2.4.1 Theorem (Leibniz rule)
For every evolutionary vector field vQ there exists one and only one operator
LvQ : F1 → F1 satisfying the Leibniz rule

LvQ(∆ ·R) = LvQ∆ ·R +∆ · LvQR. (2.21)

for all ∆ ∈ F1 and R ∈ V1, where

∆ ·R = ∆αR
α. (2.22)

Proof. The claim follows from the following equalities of functionals:

LvQ(∆ ·R)−∆ · LvQR

(2.6)
= pr vQ(∆ ·R)−∆ · LvQR

(1.14),(2.15)
= pr vQ∆ ·R +∆ · pr vQR−∆ · (pr vQR− DQR)

= pr vQ∆ ·R +∆ · DQR

= (pr vQ∆+ D∗Q∆) ·R.

Using the non-degeneracy of the pairing, one deduces LvQ∆ = pr vQ∆ + D∗Q∆.
Here we observe the phenomenon, that precisely the non-total derivative pr vQR
of R cancels out. ¤

2.4.2 Definition (Lie derivative of functional 1-forms)
The Lie derivative of a source form ∆ ∈ F1 with respect to an evolutionary vector
field vQ is given by

LvQ∆ = pr vQ∆+ D∗Q∆. (2.23)

One also says that the source form ∆ transforms infinitesimally according to the
above rule.

2.4.3 Remark
The identity of functionals

LvQ∆ ·R = pr vQ∆ ·R +∆ · pr vRQ, (2.24)

appears as formula (4.2) in [GDo2]. It is seen by (1.13) to coincide with the
second last formula in the above proof.

7This notion is due to Takens.
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2.4.4 Proposition
The Lie derivative L : vQ 7→ LvQ = pr vQ +D∗Q on F1 is a Lie algebra homomor-
phism, i.e.

L[vQ1 ,vQ2 ]
= [LvQ1

,LvQ2
], (2.25)

turning F1 into a module for the Lie algebra V1.

Proof. For the non-degenerate contraction

F
1 × V

1 → F
0

(∆, S) 7→ ∆ · S

one verifies

([LvQ1
,LvQ2

]∆) · S
(2.4),(2.21)

= [LvQ1
,LvQ2

](∆ · S)−∆ · [LvQ1
,LvQ2

]S

(2.17),(2.18)
= L[vQ1 ,vQ2 ]

(∆ · S)−∆ · L[vQ1 ,vQ2 ]S

(2.21)
= (L[vQ1 ,vQ2 ]∆) · S.

Again there is a direct proof, analogues to the second proof of 2.3.8. Let pr vQ3 =
[pr vQ1 , pr vQ2 ], then

LvQ3

(2.23)
= pr vQ3 + D∗Q3
(2.11)
= [pr vQ1 , pr vQ2 ] + D∗pr vQ1Q2−pr vQ2Q1

(1.24)
= [pr vQ1 , pr vQ2 ] + (pr vQ1(DQ2) + DQ2DQ1 − pr vQ2(DQ1)− DQ1DQ2)

∗

(1.21)
= [pr vQ1 , pr vQ2 ] + pr vQ1(D

∗
Q2
) + D∗Q1D

∗
Q2
− pr vQ2(D

∗
Q1
)− D∗Q2D

∗
Q1

(1.17)
= [pr vQ1 , pr vQ2 ] + pr vQ1D

∗
Q2
− D∗Q2pr vQ1 + D∗Q1D

∗
Q2

−pr vQ2D
∗
Q1

+ D∗Q1pr vQ2 − D∗Q2D
∗
Q1

= [pr vQ1 + D∗Q1 , pr vQ2 + D∗Q2 ]

= [LvQ1
,LvQ2

].

¤

2.4.5 Definition (Distinguished symmetry)
Let ∆ be a source form, i.e. ∆ ∈ F1. An evolutionary vector field vQ is called a
distinguished symmetry8 of ∆ if

LvQ∆ = 0.

8Following [And].
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2.4.6 Corollary
The distinguished symmetries of a source form ∆ form a Lie subalgebra of the
Lie algebra of generalized symmetries of the source equation.

Proof. This follows from Proposition 2.4.4. ¤

2.4.7 Definition (Generator of a local conservation law)
For ∆ ∈ F1 the characteristic Q ∈ V1 is called generator of a (differential) local
conservation law of the source equation ∆ = 0, if there locally exists a current
P ∈ Ap, such that Q ·∆ = DivP . One calls P the conserved current.

2.4.8 Corollary
The Lie algebra of distinguished vector fields acts on the vector space of generators
of local conservation laws.

Proof. Q · ∆ = DivP re-expressed in F0 becomes Q · ∆ = 0. The proof is
done by the Leibniz rule (2.21). ¤

By this one deduces easily

2.4.9 Corollary
The subspace of all distinguished symmetries vQ of a source form ∆, where Q
is a generator of a local conservation law of the source equation ∆ = 0, is a Lie
ideal of the Lie algebra of distinguished symmetries of ∆.

2.5 General Functional Tensors

2.5.1 Theorem (Leibniz rule)
Let X1, . . . , Xr ∈ {V

1,F1} and Z = X1⊗ · · · ⊗Xr. For every evolutionary vector
field vQ there exists one and only one operator LvQ : Z → Z satisfying the Leibniz
rule

LvQ(D(S1, . . . , Sr−2)Sr−1) = LvQ(D)(S1, . . . , Sr−2)Sr−1

+D(LvQS1, . . . , Sr−2)Sr−1 + · · ·+ D(S1, . . . ,LvQSr−2)Sr−1

+D(S1, . . . , Sr−2)LvQSr−1 (2.26)

in Xr, or equivalently

LvQ(Sr ·D(S1, . . . , Sr−2)Sr−1) = Sr · LvQ(D)(S1, . . . , Sr−2)Sr−1

+Sr ·D(LvQS1, . . . , Sr−2)Sr−1 + · · ·+ Sr ·D(S1, . . . ,LvQSr−2)Sr−1

+Sr ·D(S1, . . . , Sr−2)LvQSr−1 + LvQSr ·D(S1, . . . , Sr−2)Sr−1 (2.27)

in9 F0, for all Si ∈ X∗
i .

9This is an identity of functionals.
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Proof. The Leibniz rules (2.26) and (2.27) are easily seen to be equivalent
by (2.21). Due to (2.15) and (2.23) the Lie derivative LvQSi = pr vQSi + AiSi,
where Ai := −DQ or Ai := D∗Q depending on whether X∗

i
∼= V1 or X∗

i
∼= F1, for

all i = 1, . . . , r − 1. Ar := −DQ or Ar := D∗Q depending on whether Xr
∼= V1 or

Xr
∼= F1.

LvQ(D(S1, . . . , Sr−2)Sr−1)−D(S1, . . . , Sr−2)LvQSr−1

−D(LvQS1, . . . , Sr−2)Sr−1 − · · · −D(S1, . . . ,LvQSr−2)Sr−1

= pr vQ(D(S1, . . . , Sr−2)Sr−1) + ArD(S1, . . . , Sr−2)Sr−1

−D(S1, . . . , Sr−2)pr vQSr−1 −D(S1, . . . , Sr−2)Ar−1Sr−1

−D(pr vQS1, . . . , Sr−2)Sr−1 −D(A1S1, . . . , Sr−2)Sr−1

− · · ·

−D(S1, . . . , pr vQSr−2)Sr−1 −D(S1, . . . , Ar−2Sr−2)Sr−1

(1.17)
= pr vQ(D)(S1, . . . , Sr−2)Sr−1 + ArD(S1, . . . , Sr−2)Sr−1

+D(pr vQS1, . . . , Sr−2)Sr−1 + · · ·+ D(S1, . . . , Sr−2)pr vQSr−1

−D(S1, . . . , Sr−2)pr vQSr−1 −D(S1, . . . , Sr−2)Ar−1Sr−1

−D(pr vQS1, . . . , Sr−2)Sr−1 −D(A1S1, . . . , Sr−2)Sr−1

− · · ·

−D(S1, . . . , pr vQSr−2)Sr−1 −D(S1, . . . , Ar−2Sr−2)Sr−1

= pr vQ(D)(S1, . . . , Sr−2)Sr−1 + ArD(S1, . . . , Sr−2)Sr−1

−D(A1S1, . . . , Sr−2)Sr−1 − · · · −D(S1, . . . , Sr−2)Ar−1Sr−1. (2.28)

Hence LvQ(D)(S1, . . . , Sr−2)Sr−1 = (2.28). Again we observe the phenomenon,
that precisely the non-total derivative pr vQSi of Si (i = 1, . . . , r− 1) cancel out.

¤

2.5.2 Definition (Lie derivative of general functional tensors)
Let X1, . . . , Xr ∈ {V

1,F1}, then the Lie derivative of a functional tensor D ∈
X∗
1 ⊗ · · · ⊗X∗

r−1 ⊗Xr
∼= Hom(X1, . . . , Xr−2; Hom(Xr−1, Xr)) with respect to an

evolutionary vector field vQ is given by

LvQ(D)(S1, . . . , Sr−2)Sr−1

= pr vQ(D)(S1, . . . , Sr−2)Sr−1 + ArD(S1, . . . , Sr−2)Sr−1

−D(A1S1, . . . , Sr−2)Sr−1 − · · · −D(S1, . . . , Sr−2)Ar−1Sr−1, (2.29)

where Ai := −DQ or Ai := D∗Q depending on whether Xi
∼= V1 or Xi

∼= F1, for all
i = 1, . . . , r. One also says that the functional tensor D transforms infinitesimally
according to the above rule.

2.5.3 Proposition
The Lie derivative L : vQ 7→ LvQ on Z = X1 ⊗ · · · ⊗ Xr is a Lie algebra
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homomorphism, i.e.

L[vQ1 ,vQ2 ]
= [LvQ1

,LvQ2
], (2.30)

turning Z into a module for the Lie algebra V1.

Proof. This is a straightforward generalization of Proposition 2.6.2 and its
proof. ¤

2.6 Functional 2-Forms

2.6.1 Corollary (Lie derivative of functional 2-forms)
The Lie derivative of an operator K ∈ F1 ⊗ F1, i.e. an operator K : V1 → F1,
especially a functional 2-form K ∈ F2, with respect to the evolutionary vector
field vQ is given by

LvQK = pr vQ(K) + D∗QK + KDQ. (2.31)

2.6.2 Proposition
The Lie derivative L : vQ 7→ LvQ on F1⊗F1 is a Lie algebra homomorphism, i.e.

L[vQ1 ,vQ2 ]
= [LvQ1

,LvQ2
], (2.32)

turning F1 ⊗ F1 into a module for the Lie algebra V1.

Proof. One reproduces the first proof of Proposition 2.4.4 using the non-
degenerate contraction

(F1 ⊗ F
1)× V

1 → F
1

(K, S) 7→ KS,

and replacing (2.17) by (2.25), and (2.21) by (2.26). ¤

2.6.3 Corollary (Naturality of the adjoint operation)
The Lie derivative commutes with taking adjoints, i.e. for all Q ∈ V1

LvQ(K
∗) = LvQ(K)∗. (2.33)

In other words, ∗ : F1 ⊗ F1 → F1 ⊗ F1 is a V1-Lie module automorphism. In
particular, the Lie derivative preserves self- and skew-adjointness.

Proof. Formula (1.21). ¤
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2.7 Functional 2-Vectors

2.7.1 Corollary (Lie derivative of functional 2-vectors)
The Lie derivative of an operator S ∈ V1 ⊗ V1, i.e. an operator S : F1 → V1,
especially a functional 2-vector S ∈ V2, with respect to the evolutionary vector
field vQ is given by

LvQS = pr vQ(S)− DQS− SD∗Q. (2.34)

2.7.2 Proposition
The Lie derivative L : vQ 7→ LvQ on V1⊗V1 is a Lie algebra homomorphism, i.e.

L[vQ1 ,vQ2 ]
= [LvQ1

,LvQ2
],

turning V1 ⊗ V1 into a module for the Lie algebra V1.

2.7.3 Corollary (Naturality of the adjoint operation)
The Lie derivative commutes with taking adjoints, i.e.

LvQ(S
∗) = LvQ(S)

∗. (2.35)

In other words, ∗ : V1 ⊗ V1 → V1 ⊗ V1 is a V1-Lie module automorphism. In
particular, the Lie derivative preserves self- and skew-adjointness.

Proof. Formula (1.21). ¤

2.8 Functional (1, 1)-Tensors

The delicate point about (1, 1)-tensors is the fact, that one can view them as
differential operators from V1 → V1, but also as differential operators from F1 →
F1. Taking adjoints is a natural isomorphism. We denote the first space by
F1 ⊗ V1 and the second by V1 ⊗ F1.

2.8.1 Corollary (Lie derivative on F1 ⊗ V1)
The Lie derivative of an operator R ∈ F1 ⊗ V1, i.e. an operator R : V1 → V1,
with respect to the evolutionary vector field vQ is given by10

LvQR = pr vQ(R)− DQR + RDQ. (2.36)

2.8.2 Remark (Lie derivative on V1 ⊗ F1)
If we view R as an operator R : F1 → F1, then (2.36) must be replaced by

LvQR = pr vQ(R) + D∗QR− RD∗Q. (2.37)

10Cf. Remark 4.3.1.
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2.8.3 Proposition
The Lie derivative L : vQ 7→ LvQ on F1 ⊗ V1 (resp. V1 ⊗ F1) is a Lie algebra
homomorphism, i.e.

L[vQ1 ,vQ2 ]
= [LvQ1

,LvQ2
],

turning F1 ⊗ V1 (resp. V1 ⊗ F1) into a module for the Lie algebra V1.

2.8.4 Corollary (Naturality of the adjoint operation)
The Lie derivative commutes with taking adjoints, i.e.

LvQ(R
∗) = LvQ(R)∗. (2.38)

In other words, ∗ : V1 ⊗ F1 → F1 ⊗ V1 is a V1-Lie module isomorphism.

Proof. Formula (1.21). ¤



Chapter 3

Cartan Formulas and the Euler
Complex

3.1 The Interior Product
3.1.1 Definition
For a generalized vector field v with characteristic Q ∈ V1 the interior product
ιv : Fs → Fs−1 is defined by:

(i) ιvL := 0 for all L ∈ F0.

(ii) ιv∆ := ∆ ·Q for all ∆ ∈ F1.

(iii) ιvK := KQ for all K ∈ F2.

(iv) (ιvD)(S1, . . . , Ss−3) := D(S1, . . . , Ss−3, · )Q for all D ∈ Fs, (s ≥ 3).

One can thus restrict the definition to evolutionary vector fields.

3.1.2 Remark
This definition coincides up to a factor with the classical one for differential forms.
In order for it to be the exact generalization of the classical one, one needs to
alter the definition for every Fs, s ≥ 2. For example, for K ∈ F2 the altered
interior product is ιvK := 2KQ. We use the above definition for simplicity.

3.1.3 Lemma
For Q1, Q2 ∈ V1

(i) ιvQ1 ιvQ2 + ιvQ2 ιvQ1 = 0.

(ii) [LvQ1
, ιvQ2 ] = ι[vQ1 ,vQ2 ].

Proof. (i) is a direct consequence of the total skew-symmetry of functional
forms. (ii) follows from the Leibniz rule (2.26): [LvQ1

, ιvQ2 ]D = LvQ1
ιvQ2D −

ιvQ2LvQ1
D
(2.1)
= ιvQ2LvQ1

D +ιLvQ1
vQ2

D− ιvQ2LvQ1
D
(2.16)
= ι[vQ1 ,vQ2 ]D. ¤

39
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3.2 The Cartan Formulas

Our aim is to assume the validity of the Cartan formula for the functional spaces
Fs, i.e. a formula of the form1

LvQ = δ ιvQ + ιvQδ, (3.1)

and recursively derive the morphisms δ : Fs → Fs+1 of the Euler complex

0→ F
0 δ
→ F

1 δ
→ F

2 δ
→ F

3 → · · ·

This will be explicitly carried out for three steps, i.e. for δ : F0 → F1, δ : F1 → F2

and δ : F2 → F3.

3.2.1 Remark (Local exactness)
Cartan formulas are, among several other applications, used - in an integrated
form - to prove local exactness of the underlying sequence. More precisely, for
the sequence

F
s−1 δ
→ F

s δ
→ F

s+1

the Cartan formula LvQ = δ ιvQ + ιvQδ can locally be integrated to a homotopy
formula2

id = δh+ hδ.

Together with δ ◦ δ = 0 it proves the local exactness of the sequence, i.e.

Im(Fs−1 δ
→ F

s) = Ker(Fs δ
→ F

s+1)

locally. For details see [Olv], Section 5.4, p. 354.

3.2.2 Theorem (Naturality of δ)
If there exists morphisms δ : Fs → Fs+1 for all3 s ≥ 0 satisfying the Cartan
formula (3.1), then the morphisms δ are natural, i.e.

LvQ(δ) := [LvQ , δ] := LvQδ − δLvQ = 0. (3.2)

Proof. Using the simple fact, that the commutator [ ·, · ] is in each argument
a derivation, one verifies for Q,R ∈ V1

L[vQ,vR]
(2.30)
= [LvQ ,LvR ]

= [LvQ , δ ιvR + ιvRδ]

= [LvQ , δ] ιvR + δ [LvQ , ιvR ] + [LvQ , ιvR ]δ + ιvR [LvQ , δ]

= δ ι[vQ,vR] + ι[vQ,vR]δ + [LvQ , δ] ιvR + ιvR [LvQ , δ]

(3.1)
= L[vQ,vR] + [LvQ , δ] ιvR + ιvR [LvQ , δ],

1ιX denotes the interior product with respect to the vector field X: (ιXω)(X2, . . . , Xk) =
ω(X,X2, . . . , Xk), for a k-form ω and vector fields Xi.

2In the context of the variational bicomplex, it is called the vertical homotopy formula.
3Actually, only the existence for s ∈ {0, . . . , N} for some N is needed.
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and hence [LvQ , δ] ιvR + ιvR [LvQ , δ] = 0. Since the Cartan formula for F0 is
just LvR = ιvRδ, one deduces from the above calculations, that [LvQ , δ] = 0 for
δ : F0 → F1, which gets the induction started. By the inductive hypothesis the
first term vanishes and therefore the second term must vanish too, giving the
inductive step. ¤

3.2.3 Theorem (δ ◦ δ = 0)
If there exists morphisms δ : Fs → Fs+1 for all4 s ≥ 0 satisfying the Cartan
formula (3.1), then

δ ◦ δ = 0. (3.3)

Proof. For all Q ∈ V1

0
(3.2)
= [LvQ , δ]

(3.1)
= [δ ιvQ + ιvQδ, δ]

= δ ιvQδ + ιvQδδ − δδιvQ − δ ιvQδ

= ιvQδδ − δδιvQ .

Starting the induction at F0 the second term vanishes and hence the first too,
implying δδ = 0. By the inductive hypothesis the second term vanishes and hence
the first too, giving the inductive step. ¤

3.3 The Euler Operator

3.3.1 Theorem (Cartan Formula for F0)
There exists one and only one operator E : F0 → F1 satisfying the Cartan for-
mula5 for F0, i.e.

LvQL = E(L) ·Q, (3.4)

for all functionals6 L ∈ F0 and Q ∈ V1.

Proof. First note that LvQL = pr vQL
(1.13)
= DLQ. Due to the integration by

parts formula (1.11) E(L) := D∗L(1) is thus the unique functional 1-form satisfying
DLQ = E(L) ·Q ∈ F0 for all Q ∈ V1. E(L) is merely DL under the identification
of Corollary 1.2.17. The proof will be completed with Lemma 3.3.3. ¤

4Again, only the existence for s ∈ {0, . . . , N} for some N is needed.
5In analogy to the Cartan formula LXf = ιX df = 〈df,X〉 for a function f on a manifold,

where ιX is the interior product with respect to the vector field X (cf. Section 3.2).
6If we view L as a Lagrangians, i.e. a horizontal p-form, the Cartan formula then takes the

form LvQL = Div(ιvQL) +E(L) ·Q, [Olv], Formula (5.135). If we again view L as a functional,
then the first term is zero by definition of F0. I do not want to dwell on the definition of ιvQL
for Lagrangians here.
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3.3.2 Definition (Euler operator)
For a Lagrangian L ∈ A the operator E = δ : A → F1 defined by

E(L) := D∗L(1) (3.5)

is called the Euler operator. The equation E(L) = 0 is called the Euler-

Lagrange equation.

The following lemma shows that the Euler operator E : A → F1 factors over
F0 := A/Div(Ap), i.e. it can be viewed as an operator

E : F
0 → F

1,

which completes the existence part of the proof of the above theorem.

3.3.3 Lemma
The Euler operator E : A→ F1 vanishes on divergences, i.e.

E(DivAp) = 0. (3.6)

Proof. For P ∈ Ap

E(DivP ) = D∗DivP (1)

= D∗DiP i(1)

(1.18)
= (pr v·(Di)

︸ ︷︷ ︸

=0

P i +DiDP i)
∗(1)

= D∗P i(−Di)(1)

= 0.

¤

3.3.4 Corollary
The Cartan formula guarantees the local exactness of the sequence 0→ F0

E
→ F1,

i.e. Ker(E) = {0} ≤ F0 locally, or equivalently the local exactness of the sequence

Ap Div
→ F0

E
→ F1, i.e. Ker(E) = Div(Ap) locally. See Remark 3.2.1 for details.

3.3.5 Remark
Combining (1.13) and (3.4) we obtain

DLQ = E(L) ·Q,

which, as an identity of functionals, simply asserts that the Fréchet operator
D : A → Hom(V1,A) viewed7 as an operator D : F0 → Hom(V1,F0) is precisely
the Euler operator E : F0 → F1.

7This reflects the fact, that the vertical derivative in the variational bicomplex induces the
morphisms of the Euler complex.
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3.3.6 Remark (Euler operator)
For L ∈ A the Euler operator is given by

E(L) = ((−D)J
∂L

∂u1J
, . . ., (−D)J

∂L

∂uqJ
),

where (−D)J := (−1)|J |DJ . The components Eα(L) are called the variational
derivatives8 and often denoted by δL

δuα
.

3.3.7 Example
Let x be a single independent variable and (u, v) the dependent variables. For
L = −1

6
u2x + 4

9
u3 + 1

2
v2 one computes E(L) = ( 4

3
u2 + 1

3
uxx, v). (See Example

4.3.14).

3.3.8 Example
The Euler-Lagrange expression of the Lagrangian L =

√
1 + u2x + u2y is, up to a

sign, the mean curvature

E(L) = −H = −
(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy

√
1 + u2x + u2y

3 .

3.3.9 Example
The Camassa-Holm equation

ut − utxx = −3uux + 2uxuxx + uuxxx (3.7)

is not an Euler-Lagrange equation, cf. Example 3.4.5. If one replaces u by vx the
resulting, so called derived9 potential Camassa-Holm equation

vtx − vtxxx = −3vxvxx + 2vxxvxxx + vxvxxxx (3.8)

becomes Euler-Lagrange with Lagrangian

L = vvxvxx −
1

2
vxv

2
xx −

1

2
vtvx −

1

2
vtxvxx.

3.3.10 Example
In all modern gauge field theories the field equations are Euler-Lagrange equa-
tions, i.e.

E(L) = 0,

for a specific, physically motivated Lagrangian L. As a popular example we
can view the 4 space-time coordinates (xµ) as independent variables, and the

8In the language of the variational bicomplex: δ(Lν) = Eα(L)δu
α ∧ ν ∈ F1 for Lν ∈ F0 ≡

Ωp,0/D(Ωp−1,0) and ν = dx1 ∧ . . . ∧ dxp.
9It is the x-derivative of the potential Camassa-Holm equation vt − vtxx = − 32v

2
x + 1

2v
2
xx +

vxvxxx. See [Olv], Exercise 5.46 & 5.11.
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10 independent components of the Lorentzian metric tensor (gµν) as dependent
variables. The variational derivatives of the Hilbert-Einstein Lagrangian L =
R
√

|g|, where R is the scalar curvature expressed in gµν and its derivatives, and
g = det(gµν), coincide up to a factor with the components of the Einstein field
tensor G = (Gµν):

δL

δgµν
= −Gµν

√

|g|,

where Gµν = Rµν − 1
2
gµνR and (Rµν) is the Ricci curvature tensor. Thus the

Einstein vacuum field equations Gµν = 0 arise from a variational principle ([Ste],
p. 92). This was first discovered by Hilbert, even before Einstein published his
field equations. The other famous example is the Maxwell equations, or more
generally, the Yang-Mills equations.

We now prove the following important property of the Euler operator using
the second key lemma.

3.3.11 Lemma
The operator DE(L) is self-adjoint

10:

D∗E(L) = DE(L). (3.9)

Proof. Using the simple fact that D1 = 0 we obtain

DE(L)
(3.5)
= DD∗

L(1)

(1.18)
= pr v·(D

∗
L)1 + D∗LD1

(1.23)
= (pr v·(D

∗
L)1 + D∗LD1)

∗

(1.18)
= D∗E(L).

¤

3.3.12 Lemma ([Olv], Formula (5.34))
For L, P ∈ Ar the following product formula for the Fréchet derivative holds:

DL·P = LDP + PDL, (3.10)

where L · P :=
∑

α LαPα.

Proof. The proof follows from the standard product formula. ¤

3.3.13 Lemma ([Olv], Formula (5.80))
For the Euler operator the following product formula holds:

E(L · P ) = D∗LP + D∗PL, (3.11)

for all L, P ∈ Ar.

10The proof given here is in the spirit of [Olv], Sec. 5.3, because it avoids the use of differential
forms, the tool of the proof in [Olv], Sec. 5.4.
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Proof.

E(L · P )
(3.5)
= D∗L·P (1)
(3.10)
= (LDP + PDL)

∗(1)

= (D∗PL+ D∗LP )(1)

= D∗PL+ D∗LP.

¤

3.3.14 Proposition (Naturality of E)
For a functional L ∈ F0 the following two statements are equivalent:

(i) E(L) transforms infinitesimally as a source form.

(ii) The Lie derivative commutes with E, i.e. for all Q ∈ V1

LvQE(L) = E(LvQL). (3.12)

Proof. This is a special case of Theorem 3.2.2. The proof of the theorem
merely used the Leibniz principle and the Cartan formula. Nevertheless a direct
proof is given to demonstrate the calculus developed in Chapter 1. Both directions
follow from the following equalities. For an arbitrary Q ∈ V1

E(LvQL)
(3.4)
= E(E(L) ·Q)

(3.11)
= D∗E(L)Q+ D∗QE(L)

(3.9)
= DE(L)Q+ D∗QE(L)

(1.13)
= pr vQE(L) + D∗QE(L),

which by (2.23) completes the proof. ¤

3.4 The Helmholtz Operator

3.4.1 Theorem (Cartan formula for F1)
There exists one and only one operator H : F1 → F2 satisfying the Cartan formula
for F1, i.e.

LvQ∆ = E(∆ ·Q) + H∆(Q), (3.13)

for ∆ ∈ F1 and Q ∈ V1.
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Proof.

LvQ∆− E(∆ ·Q)
(2.23),(3.11)

= pr vQ∆+ D∗Q∆− D∗Q∆− D∗∆Q

(1.13)
= (D∆ − D∗∆)(Q).

Hence H∆(Q) = (D∆ − D∗∆)(Q). Clearly H∆ ∈ F2. ¤

Note D∆ : V1 → F1 and hence also D∗∆ : V1 → F1.

3.4.2 Definition (Helmholtz operator)
For ∆ ∈ F1 the operator H = δ : F1 → F2 defined by

H∆ := D∆ − D∗∆ (3.14)

is called the Helmholtz operator11.

3.4.3 Lemma
The Helmholtz operator satisfies

HE(L) = 0, (3.15)

for all L ∈ F0.

Proof. This is a special case of Theorem 3.2.3. Another, direct proof is
provided by Formula (3.9). ¤

3.4.4 Proposition (Naturality of H)
For a source form ∆ ∈ F1 the following two statements are equivalent:

(i) H∆ transforms infinitesimally as a functional 2-form.

(ii) The Lie derivative commutes with H, i.e. for all Q ∈ V1

LvQH∆ = HLvQ
∆. (3.16)

Proof. This is a special case of Theorem 3.2.2. Again another, direct proof
is given. Both directions follow from the following equalities. For an arbitrary
Q ∈ V1

HLvQ
∆

(3.14),(2.23)
= Dpr vQ∆+D∗

Q
∆ − D∗pr vQ∆+D∗

Q∆

(1.24),(1.18)
= pr vQ(D∆) + D∆DQ + pr v·(D

∗
Q)∆ + D∗QD∆

11In order for the Helmholtz operator to be the exact generalization of the exterior derivative
d : Ω1(M) → Ω2(M), one must alter the definition: H∆ := 1

2 (D∆ − D∗
∆). The reason that we

did not obtain the factor 1
2 lies in the definition of interior product. Cf. Remark 3.1.2.
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−pr vQ(D∆)
∗ − D∗QD∗∆ − (pr v·(D

∗
Q)∆)∗ − D∗∆DQ

(1.21)
= pr vQ(D∆ − D∗∆) + D∗Q(D∆ − D∗∆) + (D∆ − D∗∆)DQ

+(pr v·(D
∗
Q)∆− (pr v·(D

∗
Q)∆)∗)

︸ ︷︷ ︸

(1.23)
= 0

(3.14)
= pr vQ(H∆) + D∗QH∆ + H∆DQ,

which by (2.31) completes the proof. ¤

3.4.5 Example
The Camassa-Holm equation (3.7) is not variational, i.e. not of the form E(L).
This is shown by verifying H∆ 6= 0 for ∆ = ut − utxx + 3uux − 2uxuxx − uuxxx.
Indeed,

H∆ = (−2Dtxx − 2uDxxx − 3uxDxx + 2Dt + (6u− 3uxx)Dx + (3ux − uxxx)) 6= 0.

In contrast, equation (3.8) is variational. Indeed H∆ = 0 for ∆ = vtx − vtxxx +
3vxvxx − 2vxxvxxx − vxvxxxx.

3.4.6 Corollary (Noether theorem)
Let ∆ be an Euler-Lagrange form, i.e. ∆ = E(L) for some Lagrangian L. Then
vQ is a distinguished symmetry of ∆, if and only if Q is a characteristic of a
local conservation law12, i.e. there exists locally a current P ∈ Ap, such that
E(L) ·Q = DivP .

Proof. For ∆ = E(L) we have HE(L) = 0 by Lemma 3.4.3. So the Cartan
formula (3.13) implies that LvQE(L) = 0 is equivalent to E(E(L) ·Q) = 0, which
is by Corollary 3.3.4 equivalent to the local existence of a current P , such that
E(L) ·Q = DivP .

¤

3.4.7 Example
The following vector fields are Bessel-Hagen symmetries of the derived potential
Camassa-Holm equation (3.8), interpreted as a source equation:

(i) v1 := f(t, 2vt − 2vtxx − v2xx − 2vxvxxx + 3v2x)∂v.

(ii) v2 := vt∂v.

(iii) v3 := vx∂v.

(iv) v4 := (−1
2
v2xxvx + vttx − vxvtxx + vtxvxx − 2v2xvxxx +

5
2
v3x)∂v.

(v) v5 := (2v3xvxxx+3v2t+3v2tx−3vtv
2
xx−6vtvtxx+9vtv

2
x−6vtvxvxxx+2vttt−2v

4
x)∂v.

12Cf. Corollary 2.4.9.
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For the special case v6 = F (t)∂v the conserved current is P6 = (0, 1
2
F (t)(2vt −

2vtxx−v2xx−2vxvxxx+3v2x)). Similarly for v7 = G(t)(2vt−2vtxx−v2xx−2vxvxxx+
3v2x)∂v one obtains P7 = (0, 1

4
(2vt− 2vtxx− v2xx− 2vxvxxx +3v2x)

2), and for v3 one
obtains P3 = (1

2
v2x +

1
2
v2xx, vx(v

2
x − vxvxxx − vtxx)). The expressions for P4 and P5

are too long to be reproduced.

3.5 The Takens Operator

As a preparation for the next operator we prove the following formula, which
generalizes Formula (1.23).

3.5.1 Lemma
The following identity holds for a general K : V1 → F1

(pr v·(K)Q)∗R = (pr v·(K
∗)R)∗Q. (3.17)

Proof. For an arbitrary characteristic S

E(S · ((pr v·(K)Q)∗R− (pr v·(K
∗)R)∗Q))

= E(pr vS(K)Q ·R− pr vS(K
∗)R ·Q)

= E(pr vS(K)Q ·R−R · pr vS(K)Q)

= 0.

¤

3.5.2 Theorem (Cartan formula for F2)
There exists one and only one operator T : F2 → F3 satisfying the Cartan formula
for F2, i.e.

LvQK = HKQ + TK(Q), (3.18)

for all K ∈ F2 and Q ∈ V1.

Proof.

LvQK− HKQ

(2.31),(3.14)
= pr vQ(K) + D∗QK + KDQ

−DKQ + D∗
KQ

(1.18)
= pr vQ(K) + D∗QK + KDQ

−pr v·(K)Q−KDQ + (pr v·(K)Q)∗ + D∗QK
∗

K∗=−K
= pr vQ(K)− pr v·(K)Q+ (pr v·(K)Q)∗.

Hence TK(Q) = pr vQ(K) − pr v·(K)Q + (pr v·(K)Q)∗. That TK(Q) is skew-
adjoint follows immediately from K∗ = −K and that TK(Q)R = −TK(R)Q one
uses (3.17). Hence TK ∈ F3. ¤
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3.5.3 Definition (Takens operator)
For K ∈ F2 and S ∈ V1 the operator T = δ : F2 → F3 defined by

TK(S) := pr vS(K)− pr v·(K)S + (pr v·(K)S)∗ (3.19)

is called the Takens13 operator.

3.5.4 Lemma
The Takens operator satisfies

TH∆ = 0, (3.20)

for all ∆ ∈ F1.

Proof. Again, this is a special case of Theorem 3.2.3. The following equalities
provide another, direct proof. For all S ∈ V1

TH∆(S) = pr vS(D∆ − D∗∆)

−pr v·(D∆ − D∗∆)S + (pr v·(D∆ − D∗∆)S)
∗

= pr vS(D∆)− pr vS(D
∗
∆)

−pr v·(D∆)S + pr v·(D
∗
∆)S

+(pr v·(D∆)S)
∗ − (pr v·(D

∗
∆)S)

∗

= (pr vS(D∆)− pr v·(D∆)S)

−(pr vS(D
∗
∆)− (pr v·(D∆)S)

∗)

+(pr v·(D
∗
∆)S − (pr v·(D

∗
∆)S)

∗)
(1.22),(1.21),(1.23)

= 0.

¤

3.5.5 Proposition (Naturality of T)
For a functional 2-form K ∈ F2 the following two statements are equivalent:

(i) TK transforms infinitesimally as a functional 3-form.

(ii) The Lie derivative commutes with T, i.e. for all Q ∈ V1

LvQTK = TLvQ
K. (3.21)

13In [Tak], a work generalizing Noether’s theorem (Corollary 3.4.6), Formula (3.20) TH∆ = 0
is implicitly used. See also [AP], Proposition 3.1 and the discussion following Proposition 3.3.
This is why I call T the Takens operator.
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Proof. Again, this is a special case of Theorem 3.2.2. ¤

We thus succeeded to explicitly construct the first three morphisms of the
celebrated Euler sequence

0→ F
0 E
→ F

1 H
→ F

2 T
→ F

3 → · · ·

In the following two examples we make use of the local exactness of the Euler
complex at F2.

3.5.6 Example
For a given H ∈ F2,

H =

(
2v2yDx + 2vyvx 2uxvy

−2uxvy 2xDxxy + 2Dxy

)

,

we want to decide whether there exists a ∆ ∈ F1 with H = H∆. We verify for an
arbitrary T ∈ V1

TH(T ) =

(
0 0
0 0

)

,

and indeed H = H∆ for ∆ = (uxv
2y, xvxxy).

3.5.7 Example
Modifying the above example slightly and asking the same question for K ∈ F2

K = H +

(
0 uxv

−uxv 0

)

we obtain the negative answer

TK(T ) =

(
−2vT vDx − vxT

v − vT v
x vT uDx + 2vT u

x + vxT
u

vT uDx − vT u
x 0

)

6= 0,

where T α
J := DJT

α.

3.5.8 Remark
The vanishing of the Takens operator applied to a functional 2-form precisely
states its closedness. Thus the Takens operator enables us to formulate an ana-
logue of the symplectic condition. For this we have to enlarge our functional
spaces to include total integro-differential operators. Still all the formulas con-
cerning the Euler complex remain valid. The linearity of the symplectic condition
is its major advantage compared with the nonlinear Hamiltonian condition (4.7).
This will be investigated in a later work.



Chapter 4

Hamiltonian Systems

4.1 Nijenhuis-Schouten Bracket

4.1.1 Definition (Nijenhuis-Schouten bracket)
For D,E ∈ V2 the Nijenhuis-Schouten bracket [D,E] : F1 × F1 × F1 → F0 is
defined as follows:

[D,E](∆1,∆2,∆3) := LD∆1∆2 · E∆3 + LE∆1∆2 ·D∆3 + (cycle), (4.1)

where the word (cycle) means summation over all cyclic permutations of the
indices 1, 2, 3. D and E are viewed as differential operators from F1 into V1.

This definition is a generalization of the classical Nijenhuis-Schouten bracket
from differential geometry, which is one of its advantages. It appears in [GDo2],
Formula (3.3). Nevertheless there are two major drawbacks of this definition. The
first one is that the right hand side is a functional, thus it has no normal form.
This means that checking the vanishing of the bracket or extracting conditions
for its vanishing is not a direct procedure. The second one is that one needs
more than total differentials of the ∆i’s, meaning that we cannot compute with
general ∆i’s, complicating the check of vanishing of the bracket. Besides, from
this definition we do not see that the bracket of two 2-vectors is a (3, 0)-tensor,
even a 3-vector. In the following we want to make use of the freedom of adding
divergences to circumvent these drawbacks. The following formula cures both
drawbacks.

4.1.2 Proposition (Nijenhuis-Schouten bracket)
The following bracket [·, ·] : V2 × V2 → V3 is an equivalent definition of the
Nijenhuis-Schouten bracket

[D,E](∆) = pr vD∆(E)− pr vD·(E)∆ + (pr vD·(E)∆)∗ +

pr vE∆(D)− pr vE·(D)∆ + (pr vE·(D)∆)∗, (4.2)

with ∆ ∈ F1 arbitrary.

51
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Proof. For arbitrary ∆1,∆2,∆3 ∈ F1

E([D,E](∆1,∆2,∆3))

= E(LD∆1∆2 · E∆3) + E(LE∆1∆2 ·D∆3) + (cycle)
(2.24)
= E(pr vD∆1∆2 · E∆3) + E(∆2 · pr vE∆3(D∆1)) +

E(pr vE∆1∆2 ·D∆3) + E(∆2 · pr vD∆3(E∆1)) +

(cycle)
(1.17)
= E(pr vD∆1∆2 · E∆3) + E(∆2 · pr vE∆3(D)∆1) + E(∆2 ·Dpr vE∆3∆1) +

E(pr vE∆1∆2 ·D∆3) + E(∆2 · pr vD∆3(E)∆1) + E(∆2 · Epr vD∆3∆1) +

(cycle)

= E(pr vD∆1∆2 · E∆3) + E(∆2 · pr vE∆3(D)∆1)− E(D∆2 · pr vE∆3∆1) +

E(pr vE∆1∆2 ·D∆3) + E(∆2 · pr vD∆3(E)∆1)− E(E∆2 · pr vD∆3∆1) +

(cycle)

= E(pr vD∆1∆2 · E∆3) + E(∆2 · pr vE∆3(D)∆1)− E(pr vE∆3∆1 ·D∆2) +

E(pr vE∆1∆2 ·D∆3) + E(∆2 · pr vD∆3(E)∆1)− E(pr vD∆3∆1 · E∆2) +

(cycle)
(cycle)
= E(∆3 · pr vD∆1(E)∆2 +∆1 · pr vD∆2(E)∆3 +∆2 · pr vD∆3(E)∆1

+∆3 · pr vE∆1(D)∆2 +∆1 · pr vE∆2(D)∆3 +∆2 · pr vE∆3(D)∆1)

= E(∆3 · pr vD∆1(E)∆2 − pr vD∆2(E)∆1 ·∆3 + (pr vD·(E)∆1)
∗∆2 ·∆3

+∆3 · pr vE∆1(D)∆2 − pr vE∆2(D)∆1 ·∆3 + (pr vE·(D)∆1)
∗∆2 ·∆3)

= E(∆3 · (pr vD∆1(E)− pr vD·(E)∆1 + (pr vD·(E)∆1)
∗

+pr vE∆1(D)− pr vE·(D)∆1 + (pr vE·(D)∆1)
∗)∆2),

proving the desired formula for ∆ = ∆1. The skew-adjointness of [D,E](∆)
follows immediately from the skew-adjointness of D and E. For [D,E](∆)Σ =
−[D,E](Σ)∆ one further needs to notice that pr vD·(E)∆ = (pr v·(E)∆)D and
(3.17) for functional bi-vectors, i.e. skew-adjoint operators K : F1 → V1. ¤

4.1.3 Remark
The above definition is part of the general definition of the Nijenhuis-Schouten
bracket

[·, ·] : V
r × V

s → V
r+s−1,

which turns
⊕∞

s=0 V
s into a Lie superalgebra (V0 := F0), with deg(Vs) = s − 1.

For L, P ∈ F0, Q ∈ V1 and S ∈ Vs arbitrary, one defines1 [L, P ] = [P,L] :=
0, [Q,L] = −[L,Q] := LvQL = E(L) · Q = ιE(L)Q, [S, L] = (−1)s[L, S] :=
ιE(L)S and [Q, S] = −[S, Q] := LvQS. Thus the Nijenhuis-Schouten bracket is a
generalization of the Lie derivative for functional multi-vectors.

1For Σ ∈ F1 the interior product ιΣ : Vs → Vs−1 is defined completely analogues to the dual
one (cf. Definition 3.1.1).
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4.1.4 Remark
The right hand side of the formula

[D,E](∆1,∆2,∆3) (4.3)

= ∆3 · pr vD∆1(E)∆2 +∆1 · pr vD∆2(E)∆3 +∆2 · pr vD∆3(E)∆1

+∆3 · pr vE∆1(D)∆2 +∆1 · pr vE∆2(D)∆3 +∆2 · pr vE∆3(D)∆1,

which is part of the proof, appears as Formula (7.30) in [Olv]. This formula is
an identity of functionals. This definition still has the first drawback, that trivial
functionals do not in general vanish identically, but only up to local divergence.
The second drawback is eliminated and one can see the (3, 0)-tensoriality of the
expression. That this expression is in fact a 3-vector is, due to the first drawback,
not completely easy to see.

4.1.5 Definition (Poisson bracket)
Let D be a functional (2, 0)-tensor. The Poisson bracket of two functionals L, P
is defined by

{L, P} = E(L) ·DE(P ), (4.4)

which is again a functional.

4.2 Hamiltonian Structure

4.2.1 Definition (Hamiltonian structure)
A functional (2, 0)-tensor D is called Hamiltonian if its Poisson bracket (4.4) is
skew-symmetric

{L, P} = −{P,L}, (4.5)

and satisfies the Jacobi identity

{{L, P}, R}+ {{P,R}, L}+ {{R,L}, P} = 0, (4.6)

for all functionals L, P,R. These are identities of functionals.

4.2.2 Proposition
A functional (2, 0)-tensor D is Hamiltonian, if and only if D is a 2-vector satisfying

[D,D] = 0. (4.7)

Proof. First we note that if we replace E by D in the right hand side of
(4.3), then, up to a factor, we obtain (7.11) in [Olv]. The rest is done by [Olv]
Propositions 7.3, 7.4. ¤
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4.2.3 Definition (Hamiltonian equations)
Let K ∈ V1 and ut = K be a system of evolution2 equations. We say that the
evolution equation is Hamiltonian, if there exists a Hamiltonian structure D and
a functional H, such that

K = DE(H). (4.8)

Formula (2.34), prescribing the Lie derivative on functional 2-vectors, gives
the following structural interpretation of the powerful Lemma 7.26 in [Olv].

4.2.4 Theorem (Criterion for Hamiltonian structures)
Let ut = K = DE(H) be a Hamiltonian system of evolution equations. Then D

is invariant under the flow of vK, i.e.

LvKD = 0. (4.9)

LvK is the Lie derivative of functional 2-vectors.

Proof. K = D∆ with ∆ = E(H):

LvKD
(2.34)
= pr vK(D)− DKD−DD∗K
(1.18)
= pr vD∆(D)− (pr v·(D)∆ + DD∆)D−D(pr v·(D)∆ + DD∆)

∗

D∗=−D
= pr vD∆(D)− (pr v·(D)∆)D + D

∗(pr v·(D)∆)∗

−DD∆D + DD∗∆D

(3.9)
= pr vD∆(D)− (pr v·(D)∆)D + ((pr v·(D)∆)D)∗

=
1

2
[D,D](∆)

(4.7)
= 0.

¤

4.2.5 Remark
The usefulness of this theorem lies in the fact, that we can use it as a criterion
to determine all Hamiltonian structures, up to a given order, of a given system
of evolution equations. This is done for the KdV and the Boussinesq equation.

4.3 Recursion Operators

For what follows let us denote

RvQ := vRQ,

and speak about the action of functional (1, 1)-tensors on evolutionary vector
fields.

2ut = K is a short form of uαt = Kα, α = 1, . . . , q.
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4.3.1 Remark
By the above convention, the Leibniz rule (2.26) coincides with [Olv], Formula
(5.41):

[vP ,RvQ] = LvP (R)vQ + R[vP ,vQ],

which he uses to define the Lie derivative3 for functional (1, 1)-tensors. In this
thesis the general Leibniz rule (2.1) is declared to be the major property defining
the Lie derivate. This enabled us to recursively determine the Lie derivative for
all functional tensor spaces.

4.3.2 Definition (Recursion operator)
For a system of evolution equations, an operator R : V1 → V1 is called recursion
operator if it maps evolutionary symmetries to evolutionary symmetries.

4.3.3 Corollary (Criterion for recursion operators)
Let P ∈ V1 and ut = P an evolution equation. If the functional (1, 1)-tensor R

is invariant under the flow of vP , i.e.

LvP (R) = 0, (4.10)

then R is a recursion operator of the evolution equation.

Proof. If Q is a characteristic of a symmetry then by Lemma 2.3.12 LvPQ =
0. Using (4.10) and (2.26) we deduce LvP (RQ) = 0. Again by the Lemma 2.3.12
RQ is a characteristic of a symmetry. ¤

4.3.4 Lemma
For a functional (2, 0)-tensor4 E : F1 → V1 and a functional (0, 2)-tensor5 H :
V1 → F1, the following two statements are equivalent:

(i) E ·H : V1 → V1 transforms as a functional (1, 1)-tensor, i.e. according to
(2.36).

(ii) LvQ satisfies the Leibniz rule

LvQ(E ·H) = LvQE ·H + E · LvQH. (4.11)

Proof. The proof is done by the following equalities:

LvQ(E) ·H + E · (LvQH)

(2.31),(2.34)
= (pr vQ(E)− DQE− ED∗Q) ·H + E · (pr vQ(H) + D∗QH + HDQ)

(1.19)
= pr vQ(E ·H) + (E ·H)DQ − DQ(E ·H),

which by (2.36) completes the proof. ¤

3[Olv] denotes the Lie derivative LvP (R) by vP [[R]].
4Specially a functional 2-vector.
5Specially a functional 2-form.
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4.3.5 Remark
For H · E : F1 → F1 (2.36) must be replaced by (2.37) in the previous lemma.

4.3.6 Lemma
If D (resp. K) is nondegenerate functional (2, 0)-tensor (resp. (0, 2)-tensor) then
D−1 (resp. K−1) transforms infinitesimally as a functional (0, 2)-tensor (resp.
(2, 0)-tensor). Taking inverse preserves self- and skew-adjointness.

Proof. From 0
(2.36)
= LvQ(Id) = LvQ(D ·D

−1)
(4.11)
= LvQD ·D−1+D ·LvQ(D

−1)
we deduce that

LvQ(D
−1) = −D

−1
LvQ(D)D−1

(2.34)
= −D

−1(pr vQ(D)− DQD−DD∗Q)D
−1

= −D
−1pr vQ(D)D−1 + D

−1DQ + D∗QD
−1

= pr vQ(D
−1) + D

−1DQ + D∗QD
−1,

which by (2.31) completes the proof. The rest is proved in a similar fashion. ¤

4.3.7 Corollary (Construction of recursion operators)
Let P ∈ V1 and ut = P an evolution equation.

(i) If E is an invariant functional (2, 0)-tensor (i.e. LvPE = 0) and K an in-
variant functional (0, 2)-tensor (LvPK = 0), then R := E ·K is a recursion
operator of ut = P .

(ii) If D,E are invariant functional (2, 0)-tensors (i.e. LvPD = LvPE = 0) and
D nondegenerate, then R := E ·D−1 is a recursion operator of ut = P .

Proof. The proof is done by the above lemmas and (4.10). ¤

4.3.8 Corollary
Let ut = P = EE(H0) = DE(H1) be a system with two Hamiltonian structures.
If D is nondegenerate, then

R := E ·D−1 (4.12)

is a recursion operator.

Proof. This follows from Theorem 4.2.4 and the previous corollary. ¤

4.3.9 Corollary
Let ut = P be an evolution equation. If D ∈ V1 ⊗ V1 (resp. D ∈ F1 ⊗ F1)
is invariant under the flow of vP , then the self-adjoint part 1

2
(D + D∗) and the

skew-adjoint part 1
2
(D−D∗) are invariant under the flow of vP .

Proof. This follows from Formula (2.35) (resp. (2.33)). ¤
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4.3.10 Corollary
Let ut = P be an evolution equation. If R is a recursion operator and D ∈ V1⊗V1

is invariant under the flow of vP , then RD ∈ V1 ⊗ V1 is again invariant under
the flow of vP . The statement remains valid, if V1 is replaced by F1 and RD by
R∗D.

Proof. This follows from a Leibniz rule analogues to (4.11). ¤

4.3.11 Definition (Bi-Hamiltonian structure)
Let ut = EE(H0) = DE(H1) be a system with two Hamiltonian structures. The
system is called bi-Hamiltonian, if the two structures are compatible, i.e. if

[D,E] = 0.

4.3.12 Remark
Bi-Hamiltonian systems with a nondegenerate D possess a recursion operator
R = E ·D−1 generating an infinite family of Hamiltonian symmetries6, which by
the Hamiltonian version of Noether’s theorem gives rise to an infinite family of
conservation laws. This is typical for an integrable system. Further details are
found in [Olv], Chapter 7.

As mentioned in the introduction, we are now able to explicitly compute
Hamiltonian structures and recursion operators of nonlinear completely integrable
differential equations. We carry this out for both the KdV and the Boussinesq
equation. Because we cannot parametrise the nonlinear space of Hamiltonian
2-vectors, we instead compute the space of functional (2, 0)-tensors, invariant
under the flow, and then determine the Hamiltonian 2-vectors among them. The
invariance condition of Theorem 4.2.4 produces a large system of linear PDEs
which was generated using the package jets and solved with the aid of computer.
(See Appendix A)

4.3.13 Example (Korteweg-de Vries equation)
The KdV equation

ut = uxxx + uux

has a bi-Hamiltonian structure given by

D = Dx , H1 =
1
6
u3 − 1

2
u2x,

E = Dxxx +
2
3
uDx +

1
3
ux , H0 =

1
2
u2.

Take a K ∈ V1⊗V1 with K =
∑

|J |≤10K
JDJ , whereK

J = KJ(x, uI), |I| ≤ 6. The
invariant subspace coincides with the subspace generated by the two Hamiltonian
structures D and E.

6This is due to the compatibility of the two structures. Cf. [Olv], Theorem 7.24. Since no
use is made of the compatibility here, we do not dwell on this point here. See also the discussion
following Theorem 7.27.
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4.3.14 Example (Boussinesq equation)
The Boussinesq equation

ut = vx

vt =
1

3
uxxx +

8

3
uux

has a bi-Hamiltonian structure given by

D =

(
0 Dx

Dx 0

)

,

H1 = −
1
6
u2x +

4
9
u3 + 1

2
v2,

E =

(

D3
x + 2uDx + ux 3vDx + 2vx
3vDx + vx

1
3D

5
x +

5
3 (uD

3
x +D3

x · u)− (uxxDx +Dx · uxx) +
16
3 uDx · u

)

,

H0 =
1
2
v.

Take a K ∈ V1⊗V1 with K = (
∑

|J |≤10K
αβ,JDJ), whereK

αβ,J = Kαβ,J(x, uI , vI),

|I| ≤ 6 and α, β = 1, 2. Again the invariant subspace coincides with the subspace
generated by the two Hamiltonian structures D and E. (See Appendix A)

The striking fact, that the above invariant subspaces are so small, and that
they are contained in the skew-symmetric subspace is a new nonclassic phe-
nomenon and worth studying. To illustrate the strangeness of the above results,
let us take an ordinary vector field X on a manifold M with dimM > 1. Away
from singularities X can be straightened, i.e. there exists a coordinate system
(x1, . . . , xp), such that X = ∂

∂x1
. Any locally defined differential geometric object

(e.g. a tensor field), whose coefficients depend only on (x2, . . . , xp) is invariant
under the flow of X. In particular, locally, the subspace of tensor fields of a given
type, invariant under the flow of X is always infinite dimensional.



Appendix A

The Boussinesq Equation

The following pages include a Maple worksheet demonstrating how the pack-
age jets is used to find, up to a given order, all Hamiltonian structures of the
Boussinesq equation (cf. Example 4.3.14).
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http://wwwb.math.rwth-aachen.de/barakat/jets
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> restart;
> with(Desolv):
> with(jets):
> ivar:=[t,x]; Ivar:=[x]; dvar:=[u,v]; var:=op(alljets(6,Ivar,dvar));

 := ivar [ ],t x

 := Ivar [ ]x

 := dvar [ ],u v

 := var , , , , , , , , , , , , , ,x u v u
x

v
x

u
,x x

v
,x x

u
, ,x x x

v
, ,x x x

u
, , ,x x x x

v
, , ,x x x x

u
, , , ,x x x x x

v
, , , ,x x x x x

u
, , , , ,x x x x x x

v
, , , , ,x x x x x x

> el:=a->Euler(a,Ivar,dvar);

hm:=a->homotopy(a,Ivar,dvar)[1];

hh:=a->Helmholtz(a,Ivar,dvar);

vh:=a->vhomotopy(a,Ivar,dvar);

bp:=a->intnorm(a,Ivar,dvar);

hc:=b->a->hamchar(a,b,Ivar,dvar);

dop:=a->diffop(a,Ivar,dvar);

 := el →a ( )Euler , ,a Ivar dvar

 := hm →a ( )homotopy , ,a Ivar dvar
1

 := hh →a ( )Helmholtz , ,a Ivar dvar

 := vh →a ( )vhomotopy , ,a Ivar dvar

 := bp →a ( )intnorm , ,a Ivar dvar

 := hc →b →a ( )hamchar , , ,a b Ivar dvar

 := dop →a ( )diffop , ,a Ivar dvar

The Boussinesq system of evolution equations:
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> Eq:=[u[t]=v[x],v[t]=1/3*u[x,x,x]+8/3*u*u[x]];

 := Eq






,=u

t
v
x

=v
t

+
1

3
u

, ,x x x

8

3
u u

x

The left hand side is a characteristic in the spatial variables only:
> P:=[v[x],1/3*u[x,x,x]+8/3*u*u[x]];

 := P






,v

x
+

1

3
u

, ,x x x

8

3
u u

x

Check if P is a divergence:
> map(el,P);

[ ],[ ],0 0 [ ],0 0

P is the divergence of:
> map(hm,P): EL:=[%[2],%[1]];

 := EL






,+

4

3
u2 1

3
u

,x x
v

Is EL an Euler-Lagrange equation:
> hh(EL);









0 0
0 0

Compute the Lagrangian, and reduce its order through an integration by parts.

This is the Hamiltonian functional of the first Hamiltonian structure:
> vh(EL): H1:=bp(%);

 := H1 − +
4

9
u3 1

6
u

x

2 1

2
v2
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Define a general functional bi-vector BB of order 10 and jet order 6:
> BB:=mkmat(map(a->map(b->map(c->[cat(Q,a,b,op(c))(var),c],map(symch,
[$0..10],Ivar)),dvar),dvar)):

Compute the infinitesimal invariance condition =( )Lv
P

BB 0:

> lsmp:=lddop20(P,BB,ivar,dvar):
> elem:=s->map(a->a[1],map(b->op(b),map(c->op(c),mklist(s)))):
Extract the differential conditions by equating the components to zero:
> cnd:=getcond(elem(lsmp),elem(BB),Ivar,dvar):
Solve the PDE system:
> jsolve(cnd): res:=subs(cnd[4],%):
> subs01(res[3],copy(BB),res[4]): 
smp:=map(a->map(gcollect,a,ivar),%);

smp








0 [ ][ ],1 [ ]x
[ ][ ],1 [ ]x 0

,






 := 













[ ], ,[ ],3 [ ], ,x x x [ ],6 u [ ]x [ ],3 u
x

[ ] [ ],[ ],9 v [ ]x [ ],6 v
x

[ ]

[ ],[ ],9 v [ ]x [ ],3 v
x

[ ] [ ], , , ,[ ],1 [ ], , , ,x x x x x [ ],10 u [ ], ,x x x [ ],15 u
x

[ ],x x [ ],+9 u
,x x

16 u2 [ ]x [ ],+2 u
, ,x x x

16 u u
x

[ ]







Normalize the output by hand:
> smp := [mkmat([[0, [[1, [x]]]], [[[1, [x]]], 0]]), 
map(a->mulcon(2,a,ivar),mkmat([[[[1/2, [x, x, x]], [u, [x]], 
[1/2*u[x], []]], [[3/2*v, [x]], [v[x], []]]], [[[3/2*v, [x]], 
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[1/2*u[x], []]], [[3/2*v, [x]], [v[x], []]]], [[[3/2*v, [x]], 
[1/2*v[x], []]], [[1/6, [x, x, x, x, x]], [5/3*u, [x, x, x]], 
[5/2*u[x], [x, x]], [3/2*u[x,x]+8/3*u^2, [x]], 
[1/3*u[x,x,x]+8/3*u*u[x], []]]]]))];

smp








0 [ ][ ],1 [ ]x
[ ][ ],1 [ ]x 0

,






 := 













[ ], ,[ ],1 [ ], ,x x x [ ],2 u [ ]x [ ],u
x

[ ] [ ],[ ],3 v [ ]x [ ],2 v
x

[ ]

[ ],[ ],3 v [ ]x [ ],v
x

[ ]






, , , ,







,

1

3
[ ], , , ,x x x x x







,

10

3
u [ ], ,x x x [ ],5 u

x
[ ],x x







,+3 u

,x x

16

3
u2 [ ]x







,+

2

3
u

, ,x x x

16

3
u u

x
[ ]







The skew adjoint operator for the first Hamiltonian structure:
> DD:=smp[1];

 := DD








0 [ ][ ],1 [ ]x
[ ][ ],1 [ ]x 0

The Jacobi identity:
> chkjac(DD,ivar,dvar);

0

Or equivalently:
> nsbra3(DD,DD,ivar,dvar);









0 0
0 0

The infinitesimal invariance condition:
> lddop20(P,DD,ivar,dvar);









0 0
0 0
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Here is the first Hamiltonian structure of the Boussinesq equation:
> hc(DD)(H1); %-P;







,v

x
+

1

3
u

, ,x x x

8

3
u u

x

[ ],0 0

> hf1:=a->hamflow(a,H1,DD,ivar,dvar);
 := hf1 →a ( )hamflow , , , ,a H1 DD ivar dvar

This is the second Hamiltonian functional:
> H0:=1/2*v;

 := H0
1

2
v

The skew adjoint operator for the second Hamiltonian structure:
> EE:=smp[2];
EE := 













[ ], ,[ ],1 [ ], ,x x x [ ],2 u [ ]x [ ],u
x

[ ] [ ],[ ],3 v [ ]x [ ],2 v
x

[ ]

[ ],[ ],3 v [ ]x [ ],v
x

[ ]






, , , ,







,

1

3
[ ], , , ,x x x x x







,

10

3
u [ ], ,x x x [ ],5 u

x
[ ],x x







,+3 u

,x x

16

3
u2 [ ]x







,+

2

3
u

, ,x x x

16

3
u u

x
[ ]

Check the Jacobi identity:
> chkjac(EE,ivar,dvar);

0

Or equivalently:
> nsbra3(EE,EE,ivar,dvar);









0 0
0 0
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The infinitesimal invariance condition:
> lddop20(P,EE,ivar,dvar);









0 0
0 0

They are compatible:
> nsbra3(DD,EE,ivar,dvar);









0 0
0 0

Here is the second Hamiltonian structure of the Boussinesq equation:
> hc(EE)(H0); %-P;







,v

x
+

1

3
u

, ,x x x

8

3
u u

x

[ ],0 0

> hf0:=a->hamflow(a,H0,EE,ivar,dvar);
 := hf0 →a ( )hamflow , , , ,a H0 EE ivar dvar

The inverse of DD:
> DD_:=_a->[hm(_a[2]),hm(_a[1])];

 := DD_ →_a [ ],( )hm _a
2

( )hm _a
1

The Lenard recursion operator coming from the bi-Hamiltonian structure of the Boussinesq equation:
> RR:=a->dop(EE)(DD_(a)):
Get the symmetry characteristics using the recursion operator:
> Q0:=[0,0];

 := Q0 [ ],0 0
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> Q1:=P;

 := Q1






,v

x
+

1

3
u

, ,x x x

8

3
u u

x

> Q2:=RR(Q1);

Q2 + + + +
25

3
u

x
u

,x x

10

3
u u

, ,x x x

1

3
u

, , , ,x x x x x

20

3
u2 u

x
5 v v

x
,



 := 

+ + + + + +
5

3
v u

, ,x x x

40

3
v u u

x

20

3
v
x

u2 10

3
v
x

u
,x x

1

3
v

, , , ,x x x x x

10

3
u v

, ,x x x
5 u

x
v

,x x





> _Q0:=Q0;
 := _Q0 [ ],0 0

> _Q1:=[u[x],v[x]];
 := _Q1 [ ],u

x
v
x

> _Q2:=RR(_Q1);

 := _Q2






,+ +v

, ,x x x
4 u v

x
4 u

x
v + + + +4 v v

x

1

3
u

, , , ,x x x x x
4 u u

, ,x x x
8 u

x
u

,x x

32

3
u2 u

x

Characteristics and conserved densities for the first Hamiltonian structure (Olver pp. 460/461):
> H0:=1/2*v; Q0;

 := H0
1

2
v

[ ],0 0

> H1:=(bp@vh@DD_)(Q1); Q1;

 := H1 − +
4

9
u3 1

6
u

x

2 1

2
v2
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





,v

x
+

1

3
u

, ,x x x

8

3
u u

x

> H2:=(bp@vh@DD_)(Q2); Q2;

 := H2 − − + +
20

9
v u3 10

3
u u

x
v
x

5

6
v u

x

2 5

6
v3 1

3
v

,x x
u

,x x

+ + + +
25

3
u

x
u

,x x

10

3
u u

, ,x x x

1

3
u

, , , ,x x x x x

20

3
u2 u

x
5 v v

x
,





+ + + + + +
5

3
v u

, ,x x x

40

3
v u u

x

20

3
v
x

u2 10

3
v
x

u
,x x

1

3
v

, , , ,x x x x x

10

3
u v

, ,x x x
5 u

x
v

,x x





Check if Qi is the characteristic of Hi:
> hc(DD)(H0)-Q0; hc(DD)(H1)-Q1; hc(DD)(H2)-Q2; 

[ ],0 0

[ ],0 0

[ ],0 0

Check if Hi is a conserved density:
> el(hf1(_H0)); el(hf1(_H1)); el(hf1(_H2));

[ ],0 0

[ ],0 0

[ ],0 0

Other characteristics and conserved densities for the first Hamiltonian structure (Olver pp. 460/461):
> _H0:=u; _Q0;

 := _H0 u

[ ],0 0

> _H1:=(bp@vh@DD_)(_Q1); _Q1;
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 := _H1 u v

[ ],u
x

v
x

> _H2:=(bp@vh@DD_)(_Q2); _Q2;

 := _H2 + − + −
8

9
u4 2 u v2 2 u u

x

2 1

6
u

,x x

2 1

2
v
x

2







,+ +v

, ,x x x
4 u v

x
4 u

x
v + + + +4 v v

x

1

3
u

, , , ,x x x x x
4 u u

, ,x x x
8 u

x
u

,x x

32

3
u2 u

x

Check if _Qi is the characteristic of _Hi:
> hc(DD)(_H0)-_Q0; hc(DD)(_H1)-_Q1; hc(DD)(_H2)-_Q2; 

[ ],0 0

[ ],0 0

[ ],0 0

Check if _Hi is a conserved density:
> el(hf1(_H0)); el(hf1(_H1)); el(hf1(_H2));

[ ],0 0

[ ],0 0

[ ],0 0

> 
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divergence, 14

equation
Boussinesq, 54, 58, 59
Camassa-Holm, 43, 47
derived potential, 43, 47
potential, 43

Euler-Lagrange, 42
KdV, 54, 57

Euler
Euler-Lagrange equation, 42
operator, 42, 43

evolution
equation, 31, 54

form
(p− 1)-
horizontal, 14

functional, 17
1-, 17
k-, 18

source, 17, 32
functional, 16

k-form, 18
k-vector, 18
form, 17
symmetric product, 18
tensor, 18
tensor product, 18

71



72 INDEX

wedge product, 18

Hamiltonian, 53
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invariant under the flow, 54–57

Jacobi identity, 30
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