
Computing invariants of multidimensional linear systems

on an abstract homological level

M. Barakat, D. Robertz∗

Abstract

Methods from homological algebra [16] play a more and more important role in the study of
multidimensional linear systems [15, 14, 5]. The use of modules allows an algebraic treatment
of linear systems which is independent of their presentations by systems of equations. The type
of linear system (ordinary/partial differential equations, time-delay systems, discrete systems. . . )
is encoded in the (non-commutative) ring of (differential, shift, . . . ) operators over which the
modules are defined. In this framework, homological algebra gives very general information about
the structural properties of linear systems.

Homological algebra is a natural extension of the theory of modules over rings. The category of
modules and their homomorphisms is replaced by the category of chain complexes and their chain
maps. A module is represented by any of its resolutions. The module is then recovered as the
only non-trivial homology of the resolution. The notions of derived functors and their homologies,
connecting homomorphism and the resulting long exact homology sequences play a central role in
homological algebra.

The MAPLE-package homalg [1, 2] provides a way to deal with these powerful notions. The
package is abstract in the sense that it is independent of any specific ring arithmetic. If one
specifies a ring in which one can solve the ideal membership problem and compute syzygies, the
above homological algebra constructions over that ring become accessible using homalg.

In this paper we introduce the package homalg and present several applications of homalg to
the study of multidimensional linear systems using available MAPLE-packages which provide the
ring arithmetics, e.g. OreModules [4, 6] and Janet [3, 13].

Keywords: Homological algebra, multidimensional linear systems, Smith normal form, Jacobson

normal form, extension modules, computer algebra.

1 Introduction

In linear control theory it became more and more evident that properties of the system are encoded
by its intrinsic nature as a module over a certain ring of operators, rather than its specific realization
as system of equations. The theory that deals with these intrinsic properties is the general theory
of modules over rings and the homological algebra of the category of such modules. As the name of
this package suggests, our intention has been to make as much as possible of the basic homological
machinery available in a computer algebra system without the need to specify the ring of operators
from the beginning.
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2 The philosophy of the package

The basic objects of homalg are finitely presented left modules over rings in which the ideal member-
ship problem is algorithmically solvable and syzygies are effectively computable. We call such rings
computable. homalg implements the homological constructions for modules over such rings, whereas
the ring arithmetic has be to provided by a ring-specific package. The following ring-specific packages
have successfully been used with homalg: Involutive and Janet [3], OreModules [4]. PIR is one
more tiny package, or rather a pseudo-package, that makes MAPLE’s builtin facilities for dealing with
integers and some other principal ideal rings available to homalg. PIR uses the Smith normal form to
provide a standard form for the presentation of a module.

The central objects in homalg are functors. Functors map on the one hand objects of a source
category to objects of a target category, and on the other hand morphisms between two objects in the
source category to morphisms between their images in the target category in a compatible way. The
two most important functors are the Hom-functor and the tensor product functor ⊗ and their derived
functors, the definition of which will be reproduced below.

A major effort in the implementation was to find the suitable scheme for realizing the functor
part on objects in order to have a unified way in extracting the part of the functor on morphisms.
Composition and derivation of functors in homalg rely exclusively on this and define again functors.
I.e. extracting the morphism part of composed or derived functors is done in the same unified way as
for all functors. Hence, using the two basic operations of composing and deriving functors, the user
can without effort add new functors to those already existing in homalg.

Given a (covariant) functor F the i-th left derivation of F is as usual denoted by LiF . A short exact
sequence 0 → M ′ → M → M ′′ → 0 of modules then gives rise to a long exact sequence connecting
LiF (M ′) → LiF (M) → LiF (M ′′) and Li+1F (M ′) → Li+1F (M) → Li+1F (M ′′) for all i ≥ 0. These
so-called connecting homomorphisms are implemented in homalg.

Some natural transformations between functors are also implemented in homalg. The most promi-
nent are the embedding of a kernel in the source of a map and the natural epimorphism from the
target of a map onto its cokernel.

In homalg one finds procedures to compute homologies of complexes (especially to test exactness
of complexes), to check commutativity of diagrams, to check surjectivity or injectivity of maps, etc.

One major restriction in homalg is that one cannot change the base ring. All functors are hence
functors where the source and target category are defined over the same ring.

3 Finitely presented modules

homalg can only deal with finitely presented modules. A finitely presented D-module M is a quotient
of a free module of finite rank D1×l0 by a finitely generated submodule D1×l1A = im(.A), where
A ∈ Dl1×l0 :

M = D1×l0/D1×l1A = coker(.A).

As usual a presentation is given by generators and relations. A presentation of a module in homalg

is a list containing as first entry the list of generators and as second entry the list of relations. The
third entry is a string delimiter to optically indicate the end of the presentation. This string, unless
changed by the user, defaults to "Presentation". The remaining entries provide extra information
about the presented module, e.g. its Hilbert-series. This extra information can only be provided by
the ring-specific package.

In the list of generators the concrete generators are numbered by abstract generators being the l0
standard basis vectors of the underlying free module D1×l0 . The list of relations simply contains the
rows of the matrix A. An example is given in Figure 1.
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Figure 1: A module of homomorphisms between two modules over D = Q[x, y, z] with Involutive

[ [[1, 0, 0] =

"

0 y 0

0 −y 0

#

, [0, 1, 0] =

"

1 0 0

0 1 0

#

, [0, 0, 1] =

"

0 0 −y

0 0 x

#

],

[[x − y, 0, 0], [y, xy, 0], [0, 0, z3]],

“Presentation”,

generators 3 + 8 s + 14 s2 + s3
“

14
(1−s)

+ 6
(1−s)2

”

,

relations [14, 6, 0] ]

Hilbert-series

Cartan-characters

4 Functors

Here we define the basic functors implemented in homalg. We restrict ourselves to describe only
those functors with the source category also being the category of left D-modules. Nevertheless
functors like the kernel functor ker, the cokernel functor coker, the pullback functor and the defect
of homomorphisms functor are implemented. The objects of their source categories are not merely
modules but themselves morphisms between modules. In homalg the object and morphism part of a
functor are two different procedures. If the object part has the name F then the morphism part is
FMap.

Let D be a computable ring, as defined above.

4.1 The functor T

Over an Ore-domain D the set of all torsion elements of a left D-module M forms a submodule TM
called the torsion submodule of M . Taking the torsion submodule is functorial, i.e. every D-module

homomorphism M
α→ N induces by restriction again a homomorphism TM

Tα:=α|TM−−−−−−−→ TN . T is a
covariant functor from the category of left D-modules to itself.

4.2 The Hom-functor

For two left D-modules M and L denote by Hom(M,L) the abelian group of all D-module homo-
morphisms from M to N . For a D-module homomorphism M

α→ N let Hom(α,L) : Hom(N,L) →
Hom(M,L) : ψ 7→ ψ ◦ α. Hom(−, L) is thus a contravariant functor from the category of D-modules
to the category of abelian groups.

For this functor to comply with the above mentioned restriction certain properties of the ring D
are required. Either D is commutative, or L = D, in which case the ring D should come with a fixed
involution, i.e. self-inverse anti-automorphism θ : D → D. θ allows one to transform a right module
structure to a left module structure again. If this is provided, then Hom(−, L) is a contravariant
functor from the category of left D-modules to itself.
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4.3 The tensor product functor ⊗
For a left resp. right D-module M resp. L denote by M ⊗ L the tensor product over D of M and L,
which is an abelian group. For D-module homomorphism M

α→ N let α⊗L : M ⊗L→ N ⊗L : ϕ 7→
ϕ⊗ IdL. Thus −⊗L is a covariant functor from the category of D-modules to the category of abelian
groups.

Again, for this functor to comply with the above mentioned restriction we always assume D to be
commutative (note that −⊗D is equivalent to the identity functor). If this is provided, then −⊗ L
is a covariant functor from the category of D-modules to itself.

4.4 Derivations

We define the left (resp. right) derived functor of a covariant (resp. contravariant) functor F using
projective resolutions: For a D-module M compute a projective resolution P

· · · → Pi+1 → Pi → Pi−1 → · · · → P1 → P0
︸ ︷︷ ︸

=:P

→M → 0

of M . Define for i ≥ 0 the left (resp. right) derived functor LiF (resp. RiF ) of the covariant (resp.
contravariant) functor F by taking the homology (resp. cohomology) of the complex (resp. cocomplex)
F (P ) at the i-th position [10].

The most prominent left derived functor of a covariant functor is Tori(−, L) (i ≥ 0). Since −⊗ L
is right exact, the two functors −⊗ L and Tor0(−, L) are equivalent.

The most prominent right derived functor of a contravariant functor is Exti(−, L) (i ≥ 0). Since
Hom(−, L) is left exact, the two functors Hom(−, L) and Ext0(−, L) are equivalent. The Ext-functor
has up to our knowledge simply more applications in system theory than the Tor-functor.

Since we cannot compute injective resolutions, we are not able to implement right (resp. left)
derived functors of a covariant (resp. contravariant) functor.

From the point of view of derived categories, a module M should be replaced by any of its reso-
lutions, which is a complex, say P . All the resolutions of the module are homotopy equivalent. The
complex P is exact in all degrees except degree 0 and the module M is recovered as the only non-trivial
homology of P at degree 0. In general two complexes are identified in the derived category if there
exists a chain of quasi-isomorphisms, i.e. chain maps inducing isomorphism on homology, connecting
the one complex with the other. Homotopy equivalences are special cases of quasi-isomorphisms. So
we obtain the derived category by inverting quasi-isomorphisms. The connecting homomorphisms lead
to the so-called exact triangles in the derived category of the category of finitely presented D-modules,
which is simply the way to look at long exact sequences in the realm of triangulated categories.

5 An example over the Gaussian integers

Here we take D = Z[
√
−1]. D is a Euclidean domain, which is not a field, and hence has global

dimension 1. In the following example M and N will be finitely generated D-modules. For M we
consider

M
ε→M∗∗,

where M∗∗ := HomD(HomD(M,D), D) and ε is the evaluation map. We also consider the short exact
sequence

0→ TM
ι→M

ν→M/TM → 0,
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where ι is the embedding and ν is the natural epimorphism. The last sequence induces via the
contravariant functor HomD(−, N) the sequence

0→ HomD(M/TM,N)
HomD(ν,N)−−−−−−−→ HomD(M,N)

η := HomD(ι,N)−−−−−−−−−−→ HomD(TM,N)→ 0.

This sequence is again exact, since the torsion free factor M/TM over the principal ideal domain D
is free and Ext1D(M/TM,N) vanishes. We start with the following diagram and only indicate the
arrows we need:

0

↓

0 ←− C ′ ←− B′ τ←− A′ ←− K ′ ←− 0

↓ ω1 ↓ β1 ↓ α1 ↓ κ1

0 ←− C ←− B
ψ←− A ←− K ←− 0

↓ ω2 ↓ β2 ↓ α2 ↓ κ2

0 ←− C ′′ ←− B′′ φ←− A′′ ←− K ′′ ←− 0

↓

0

,

where

B
ψ←− A

↓ β2 ↓ α2

B′′ φ←− A′′

=

HomD(TM,N)⊕M∗∗ aη⊕dε←−−−− HomD(M,N)⊕M

↓ b Id⊕ 0 ↓ η ⊕ ν

HomD(TM,N)⊕ 0
c Id⊕0←−−−− HomD(TM,N)⊕M/TM

,

with a, b, c, d ∈ D satisfying ab = c for the square to be commutative. A′ ∼= Hom(M/TM,N) ⊕ TM
resp. B′ is defined as the kernel of α2 resp. β2, and τ is the map induced by ψ between the kernels. The

two middle columns A′ α1→ A
α2→ A′′ and B′ β1→ B

β2→ B′′ regarded as chain complexes and (τ, ψ, φ) as a

chain map induce a kernel sequence K ′ κ1→ K
κ2→ K ′′ and a cokernel sequence C ′ ω1→ C

ω2→ C ′′. Since, as
seen above, α2 is surjective and β1 is injective by definition, there exists a connecting homomorphism
δ connecting the kernel and the cokernel sequence to a long exact sequence:

K ′ κ1→ K
κ2→ K ′′ δ→ C ′ ω1→ C

ω2→ C ′′.

> restart;

The package PIR enables one to work over several Maple-builtin principal ideal rings:

> with(PIR): with(homalg):

> RPP:=‘PIR/homalg‘;

RPP := PIR/homalg

Since we won’t change the base ring during the computation we fix it once and for all:

> ‘homalg/default‘:=RPP;

homalg/default := PIR/homalg

Specify D = Z[
√
−1], the ring of Gaussian integers:
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> var:=[I];

var := [I]

> Pvar(var);

[“Z[I]”]

Define the four variables with c = ab:

> a:=1+I; b:=5; c:=a*b; d:=2*(1+I);

a := 1 + I

b := 5

c := 5 + 5 I

d := 2 + 2 I

Define the D-module M :
> M:=Cokernel([[1,2,4,6],[6*(1+I)*1,6*(1+I)*3,6*(1+I)*4,6*(1+I)*5]],var
> );

M := [[[1, 0, 0] = [0, 1, 0, −1], [0, 1, 0] = [0, 0, 1, 0], [0, 0, 1] = [0, 0, 0, 1]],

[[6 + 6 I, 0, 0]], “Presentation”, [6 + 6 I, 0, 0], 2]
The torsion submodule TM :

> TM:=TorsionSubmodule(M,var);

TM := [[1 = [0, 1, 0, −1]], [6 + 6 I], “Presentation”, [6 + 6 I], 0]

The embedding map ι:

> iota:=TorsionSubmoduleEmb(M,var);

ι :=
[

1 0 0
]

The torsion free part FM := M/TM :

> FM:=Cokernel(iota,M,var);

FM := [[[1, 0] = [0, 0, 1, 0], [0, 1] = [0, 0, 0, 1]], [[0, 0]], “Presentation”, [0, 0], 2]

The natural epimorphism M
ν−→ FM :

> nu:=CokernelEpi(iota,M,var);

ν :=





0 0
1 0
0 1





The double dual M∗∗:

> HHM:=HomHom_R(M,var);

HHM := [[[1, 0] =

[
1
0

]

, [0, 1] =

[
0
1

]

], [[0, 0]], “Presentation”, [0, 0], 2]

The evaluation map M
ε−→M∗∗:

> epsilon:=NatTrIdToHomHom_R(M,var);

ε :=





0 0
1 0
0 1





The D-module N :
> N:=Cokernel([[1,2,4,0],[2*(1-I)*1,2*(1-I)*3,2*(1-I)*4,0],[0,0,0,2]],v
> ar);

N := [[[1, 0, 0] = [0, 0, 0, 1], [0, 1, 0] = [0, −1, 0, 1], [0, 0, 1] = [0, 0, 1, 0]],

[[2, 0, 0], [0, 2 + 2 I, 0]], “Presentation” , [2, 2 + 2 I, 0], 1]
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The module of homomorphisms HomD(M,N):

> HMN:=Hom(M,N,var);

HMN :=

[[

[1, 0, 0, 0, 0, 0, 0, 0] =





0 0 0
0 0 0
1 0 0



 , [0, 1, 0, 0, 0, 0, 0, 0] =





0 0 0
−1 0 0

1 0 0



 ,

[0, 0, 1, 0, 0, 0, 0, 0] =





1 0 0
−2 0 0

1 0 0



 , [0, 0, 0, 1, 0, 0, 0, 0] =





−1 0 0
3 0 0
−3 1 0



 ,

[0, 0, 0, 0, 1, 0, 0, 0] =





−1 0 0
3 1 0
−4 1 0



 , [0, 0, 0, 0, 0, 1, 0, 0] =





0 1 0
0 3 0
−5 1 0



 ,

[0, 0, 0, 0, 0, 0, 1, 0] =





0 0 0
0 0 1
0 0 0



 , [0, 0, 0, 0, 0, 0, 0, 1] =





0 0 0
0 0 0
0 0 1





]

, [

[2, 0, 0, 0, 0, 0, 0, 0], [0, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, 0, 0],

[0, 0, 0, 2 + 2 I, 0, 0, 0, 0], [0, 0, 0, 0, 2 + 2 I, 0, 0, 0], [0, 0, 0, 0, 0, 2 + 2 I, 0, 0]],

“Presentation”, [2, 2, 2, 2 + 2 I, 2 + 2 I, 2 + 2 I, 0, 0], 2

]

The module of homomorphisms HomD(TM,N):

> HTMN:=Hom(TM,N,var);

HTMN := [[[1, 0] =
[

1 0 0
]
, [0, 1] =

[
−1 1 0

]
], [[2, 0], [0, 2 + 2 I]], “Presentation”,

[2, 2 + 2 I], 0]
The identity IdHomD(TM,N) map of HomD(TM,N):

> Id:=IdentityMap(HTMN,var);

Id :=

[
1 0
0 1

]

The induced map η := HomD(ι,N):

> eta:=HomMap(TM,iota,M,N,var);

η :=















0 0
0 0
1 0
−1 0
−1 0

1 1
0 0
0 0















The zero module:

> Z:=ZeroModule(var);

Z := [[1 = 0], [1], “Presentation”, [1], 0]

The zero map from M/TM to the zero module:

> zeta:=ZeroMap(FM,Z,var);
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ζ :=

[
0
0

]

The zero map from M∗∗ to the zero module:

> chi:=ZeroMap(HHM,Z,var);

χ :=

[
0
0

]

A
is the direct sum of HomD(M,N) and M :

> A:=DirectSum(HMN,M,var);

A := [[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] = [0, −1, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] = [1, −2, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] = [−1, 3, −3, 0, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] = [0, 0, 0, 0, −1, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] = [0, 0, 0, 1, −2, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] = [0, 0, 0, −1, 3, −3, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]], [

[2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2 + 2 I, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 2 + 2 I, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2 + 2 I, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 6 + 6 I, 0, 0, 0, 0]], “Presentation”,

[2, 2, 2, 2 + 2 I, 2 + 2 I, 2 + 2 I, 6 + 6 I, 0, 0, 0, 0], 4]
A′′ is the direct sum of HomD(TM,N) and M :

> _A:=DirectSum(HTMN,FM,var);

A := [[[1, 0, 0, 0] = [1, 0, 0, 0], [0, 1, 0, 0] = [−1, 1, 0, 0], [0, 0, 1, 0] = [0, 0, 1, 0],

[0, 0, 0, 1] = [0, 0, 0, 1]], [[2, 0, 0, 0], [0, 2 + 2 I, 0, 0]], “Presentation”,

[2, 2 + 2 I, 0, 0], 2]
α2 is the direct sum of the maps η and ν:

> alpha2:=DirectSumMap(HMN,M,eta,nu,HTMN,FM,var);

α2 :=






















1 0 0 0
1 0 0 0
1 0 0 0
−1 1 0 0

1 1 0 0
1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1





















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A′ is the kernel of α2:

> A_:=Kernel(A,alpha2,_A,var);

A := [[[1, 0, 0, 0, 0, 0, 0] = [−1, 2, −2− 2 I, 2 + 2 I, −4− 4 I, 2 + 2 I, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0] = [−3, 5, −2− 2 I, 2 + 2 I, −4− 4 I, 2 + 2 I, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0] = [5, −10, 8 + 4 I, −9− 4 I, 21 + 8 I, −16− 4 I, 0, 0, 3, 0, 0],

[0, 0, 0, 1, 0, 0, 0] = [1, −3, 4, −4, 12, −12, 0, 0, 3, 0, 0],

[0, 0, 0, 0, 1, 0, 0] = [−3, 9, −11, 12, −33, 32, 0, 0, −8, 0, 0],

[0, 0, 0, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1] = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]], [[2, 0, 0, 0, 0, 0, 0],

[0, 2, 0, 0, 0, 0, 0], [0, 0, 2 + 2 I, 0, 0, 0, 0], [0, 0, 0, 2 + 2 I, 0, 0, 0],

[0, 0, 0, 0, 6 + 6 I, 0, 0]], “Presentation”, [2, 2, 2 + 2 I, 2 + 2 I, 6 + 6 I, 0, 0], 2]
α1 is the embedding map:

> alpha1:=KernelEmb(A,alpha2,_A,var);

α1 :=













−1− 2 I 0 −1 0 0 2 + 2 I 0 0 0 0 0
−2 I 1 −3 0 0 2 + 2 I 0 0 0 0 0

2 + 4 I −1 4 −1 0 −6− 4 I 3 0 0 0 0
1 0 0 −1 −1 −1 3 0 0 0 0
−2 0 0 3 1 4 −8 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0













The A-sequence is exact:

> IsShortExactSeq(A_,alpha1,A,alpha2,_A,var,"VERBOSE");

true

B is the direct sum of HomD(TM,N) and M∗∗:

> B:=DirectSum(HTMN,HHM,var);

B := [[[1, 0, 0, 0] = [1, 0, 0, 0], [0, 1, 0, 0] = [−1, 1, 0, 0], [0, 0, 1, 0] = [0, 0, 1, 0],

[0, 0, 0, 1] = [0, 0, 0, 1]], [[2, 0, 0, 0], [0, 2 + 2 I, 0, 0]], “Presentation”,

[2, 2 + 2 I, 0, 0], 2]
B′′ is the direct sum of HomD(TM,N) and the zero module:

> _B:=DirectSum(HTMN,Z,var);

B := [[[1, 0] = [−1, 0, 1], [0, 1] = [0, −1, 1]], [[2, 0], [0, 2 + 2 I]], “Presentation”,

[2, 2 + 2 I], 0]
β2 is the direct sum of the map bId and the zero map χ:

> beta2:=DirectSumMap(HTMN,HHM,MulMat(b,Id,var),chi,HTMN,Z,var);

β2 :=







−1 0
1 −1
0 0
0 0







B′ is the kernel of β2:

> B_:=Kernel(B,beta2,_B,var);

B := [[[1, 0] = [0, 0, 1, 0], [0, 1] = [0, 0, 0, 1]], [[0, 0]], “Presentation”, [0, 0], 2]

β1 is the embedding map:
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> beta1:=KernelEmb(B,beta2,_B,var);

β1 :=

[
0 0 1 0
0 0 0 1

]

The B-sequence is in this example (depending on the choice of the number b) exact:

> IsShortExactSeq(B_,beta1,B,beta2,_B,var,"VERBOSE");

true

ψ is the direct sum of the maps aη and dǫ:
> psi:=DirectSumMap(HMN,M,MulMat(a,eta,var),MulMat(d,epsilon,var),HTMN,
> HHM,var);

ψ :=






















1 + I 0 0 0
1 + I 0 0 0
1 + I 0 0 0
−1− I 1 + I 0 0
1 + I 1 + I 0 0
1 + I 1 + I 0 0

0 −1− I 0 0
0 0 0 0
0 0 0 0
0 0 2 + 2 I 0
0 0 0 2 + 2 I






















Some infos about ψ:

> IsHom(A,psi,B,var);

true

> IsSurjective(psi,B,var);

false

> IsInjective(A,psi,B,var);

false

A necessary condition to be able to complete the square:

> CheckKerSq(A,alpha2,_A,psi,B,beta2,_B,var);

[%1, %1, %1, %1, %1, %1, %1]

%1 := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Completing the square by $\phi$, which is the direct sum of the map $c\Id$ and the zero map

$\zeta$:

> phi:=DirectSumMap(HTMN,FM,MulMat(c,Id,var),zeta,HTMN,Z,var);

φ :=







−1− I 0
1 + I −1− I

0 0
0 0







Some infos about $\phi$:

> IsHom(_A,phi,_B,var);

true

> IsSurjective(phi,_B,var);

false

> IsInjective(_A,phi,_B,var);
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false

Check the commutativity of the square:

> IsCommutativeSq(alpha2,phi,psi,beta2,_B,var);

true

The induced kernel map τ :

> tau:=KernelMap(A,alpha2,_A,psi,B,beta2,_B,var);

τ :=













0 0
0 0
0 0
0 0
0 0
0 0
0 0













Some infos about τ :

> IsHom(A_,tau,B_,var);

true

> IsSurjective(tau,B_,var);

false

> IsInjective(A_,tau,B_,var);

false

Check the commutativity of the square:

> IsCommutativeSq(alpha1,psi,tau,beta1,B,var);

true

Compute the kernel sequence:

> K:=Kernel(A,psi,B,var);

K := [[[1, 0, 0, 0, 0, 0, 0, 0, 0] = [0, 0, 2, −2, 4, −2, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0] = [−1− I, 2 + 2 I, 1− I, −2, 4, −2, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0] = [−1, 2, 2, −2, 4, −2, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0] = [−3, 5, 2, −2, 4, −2, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0] = [0, 0, 2, −1, 3, −2, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0] = [−1, 3, −1, 1, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0] = [6 + I, −12− 2 I, −7 + I, 8, −20, 12, 0, 0, −1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1] = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]], [

[1 + I, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1 + I, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2 + 2 I, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2 + 2 I, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 6 + 6 I, 0, 0]], “Presentation”,

[1 + I, 1 + I, 2, 2, 2 + 2 I, 2 + 2 I, 6 + 6 I, 0, 0], 2]
> K_:=Kernel(A_,tau,B_,var);
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K := [[[1, 0, 0, 0, 0, 0, 0] = [−3, 5, −2− 2 I, 2 + 2 I, −4− 4 I, 2 + 2 I, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0] = [−2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0] = [6, −11, 6 + 2 I, −6− 2 I, 16 + 4 I, −14− 2 I, 0, 0, 3, 0, 0],

[0, 0, 0, 1, 0, 0, 0] = [−4, 7, −4− 4 I, 5 + 4 I, −9− 8 I, 4 + 4 I, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0] = [0, 5, −11 + 4 I, 11− 4 I, −36 + 8 I, 40− 4 I, 0, 0, −11, 0, 0],

[0, 0, 0, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1] = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]], [[2, 0, 0, 0, 0, 0, 0],

[0, 2, 0, 0, 0, 0, 0], [0, 0, 2 + 2 I, 0, 0, 0, 0], [0, 0, 0, 2 + 2 I, 0, 0, 0],

[0, 0, 0, 0, 6 + 6 I, 0, 0]], “Presentation”, [2, 2, 2 + 2 I, 2 + 2 I, 6 + 6 I, 0, 0], 2]
> kappa1:=KernelMap(A_,tau,B_,alpha1,A,psi,B,var);

κ1 :=













−1 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 I 0 1 0 0 −3 0 0
−1 0 −1 1 1 0 0 0 0

1 −1 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1













> _K:=Kernel(_A,phi,_B,var,"var_to_assign_embedding_info"=’_KK’);

K := [[[1, 0, 0, 0] = [−2, 2, 0, 0], [0, 1, 0, 0] = [−3− I, 2, 0, 0], [0, 0, 1, 0] = [0, 0, 1, 0],

[0, 0, 0, 1] = [0, 0, 0, 1]], [[1 + I, 0, 0, 0], [0, 1 + I, 0, 0]], “Presentation”,

[1 + I, 1 + I, 0, 0], 2]
> copy(_KK);







0 2 0 0
−1− I 2 0 0

0 0 1 0
0 0 0 1







> kappa2:=KernelMap(A,psi,B,alpha2,_A,phi,_B,var);

κ2 :=

















−1 0 0 0
0 1 0 0
−1 0 0 0
−1 0 0 0
−1 0 0 0

0 0 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

















The kernel sequence has a non-zero cokernel at K ′′:

> IsShortExactSeq(K_,kappa1,K,kappa2,_K,var,"VERBOSE");

“homs” = true, “cmps” = true, “defs” = [true, true,

[[[1, 0] = [0, 0, 1, 0], [0, 1] = [0, 0, 0, 1]], [[0, 0]], “Presentation”, [0, 0], 2]]
Define the cokernel sequence:

> C:=Cokernel(psi,B,var);
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C := [[[1, 0, 0, 0] = [−1, 1, 0, 0], [0, 1, 0, 0] = [−2, 1, 0, 0], [0, 0, 1, 0] = [3, −2, 0, 1],

[0, 0, 0, 1] = [0, 0, −1, 1]],

[[1 + I, 0, 0, 0], [0, 1 + I, 0, 0], [0, 0, 2 + 2 I, 0], [0, 0, 0, 2 + 2 I]], “Presentation”,

[1 + I, 1 + I, 2 + 2 I, 2 + 2 I], 0]
> C_:=Cokernel(tau,B_,var,"var_to_assign_embedding_info"=’CC_’);

C := [[[1, 0] = [0, 0, 1, 0], [0, 1] = [0, 0, 0, 1]], [[0, 0]], “Presentation”, [0, 0], 2]

> copy(CC_);
[

1 0
0 1

]

> omega1:=CokernelMap(tau,B_,beta1,psi,B,var);

ω1 :=

[
1 1 1 −1
1 1 1 0

]

> _C:=Cokernel(phi,_B,var);

C := [[[1, 0] = [0, −1, 1], [0, 1] = [1, −1, 0]], [[1 + I, 0], [0, 1 + I]], “Presentation” ,

[1 + I, 1 + I], 0]
> omega2:=CokernelMap(psi,B,beta2,phi,_B,var);

ω2 :=







0 −1
1 0
−1 1

0 0







The cokernel sequence has a non-zero kernel at C ′:

> IsShortExactSeq(C_,omega1,C,omega2,_C,var,"VERBOSE");

“homs” = true, “cmps” = true, “defs” = [[

[[1, 0] = [0, 0, 2 + 2 I, 0], [0, 1] = [0, 0, 0, 2 + 2 I]], [[0, 0]], “Presentation”, [0, 0],

2], true, true]
Compute the connecting homomorphism between the kernel and the cokernel sequence:
> delta:=ConnectingHom(_K,alpha2,psi,tau,beta1,C_,var,"Hqn_embedding_in
> fo"=_KK,"Hsn_1_embedding_info"=CC_,"Cqn_Bqn"=_A,"Zn_1"=B,"Zsn_1"=B_);

δ :=







0 0
0 0

2 + 2 I 0
0 2 + 2 I







The resulting sequence is a long exact sequence:
> IsExactCoseq([K_,kappa1,K,kappa2,_K,delta,C_,omega1,C,omega2,_C],var,
> "VERBOSE");

true

6 System-theoretic interpretation of homological constructions

For a finitely presented module M with relation matrix A denote by M⊤ the module with relation
matrix θ(A) defined by (θ(A))ij = θ(Aji), where θ is the fixed involution coming with the ring. Of
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course M⊤ and Ext0(M⊤, D) depend on the presentation of M . Nevertheless Exti(M⊤, D) for i > 0
only depends on the isomorphism type of M . For instance

Ext1(M⊤, D) ∼= TM, (1)

a fact that is often demonstrated in the following examples. Since one has the exact sequence

0→ Ext1(M⊤, D)→M
ε→M∗∗ → Ext2(M⊤, D)→ 0,

the module M is reflexive, iff Exti(M⊤, D) = 0 for i = 1, 2. Furthermore M is projective, iff
Exti(M,D) = 0 for all 0 < i ≤ n, where n is the global dimension (possibly infinite) of D. This
is summarized in Figure 2 (for more details see [15, 5]).

An immediate application of the homological machinery, is that all the homological constructions
depend only on the isomorphism type of the module, i.e. on the intrinsic structural properties of
the system (independent of the specific realization). By this, one can interpret these constructions
as invariants, and one can distinguish between intrinsically different systems by finding a differing
homological property.

Figure 2: characterizing system/module properties

system module homological

algebra

autonomous elements TM 6= 0 Ext1(M⊤, D) 6= 0

controllability,
parametrizability

TM = 0 Ext1(M⊤, D) = 0

Exti(M⊤, D) = 0,
parametrizability

reflexive
of the parametrization

i = 1, 2

. . . . . . . . .

int. stabilizability, Exti(M⊤, D) = 0,
Bézout-identity, projective

chain of n parametrizations 1 ≤ i ≤ n

in general no criteria
flatness free

but for a PID: torsion free = free
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7 Applications

7.1 A bipendulum

In this section we demonstrate methods for the study of structural properties of linear systems of
ordinary differential equations with rational coefficients, i.e. systems defined over the Weyl algebra of
differential operators with respect to time t with rational functions in t as coefficients. We consider
the example of a mechanical system called bipendulum which consists of two pendula of length l1
respectively l2, fixed at the two ends of a bar [14]. We load the package homalg and the ring-specific
package Janet providing procedures for the algebraic analysis of linear systems of partial differential
equations.

> restart;

> with(Janet):

> with(homalg):

First we define the lists of independent and dependent variables for the linear system:

> ivar:=[t]; dvar:=[x1, x2, x1t, x2t, u];

ivar := [t]

dvar := [x1 , x2 , x1t , x2t , u]

Janet1 indicates that the package Janet will be used with one independent variable. homalg will
then use the Jacobson normal form for ordinary differential operators with rational coefficients to
generate the best basis for a module. This demonstrates how the flexibility of homalg can be exploited
by using different ring-specific features.

> RPJ:=‘Janet/homalg‘;

RPJ := Janet/homalg

> RPJ1:=‘Janet1/homalg‘;

RPJ1 := Janet1/homalg

The system of the bipendulum is described by equating the following system of ordinary differential
expressions to 0:

> R:=[diff(x1(t),t)-x1t(t), diff(x2(t),t)-x2t(t),
> g/l1*x1(t)+diff(x1t(t),t)+g/l1*u(t),
> g/l2*x2(t)+diff(x2t(t),t)+g/l2*u(t)];

R := [( d
dt

x1(t))− x1t(t), ( d
dt

x2(t))− x2t(t),
g x1(t)

l1
+ ( d

dt
x1t(t)) +

g u(t)

l1
,

g x2(t)

l2
+ ( d

dt
x2t(t)) +

g u(t)

l2
]

Here g is the gravitational constant, x1(t) and x2(t) are the positions of the end points of the
two pendula at time t and u(t) is the position of the bar at time t. These differential expressions are
obtained from a second order ordinary differential system by substituting x1t for the derivative of x1
with respect to time t and similarly for the derivative of x2 with respect to t. Hence, we consider a
first order linear system. The corresponding differential operator, which is expected as input for the
homalg procedures, can be written as follows:

> A:=Diff2Op(R, ivar, dvar);
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A :=










[[1, [t]]] 0 [[−1, []]] 0 0
0 [[1, [t]]] 0 [[−1, []]] 0

[[
g

l1
, []]] 0 [[1, [t]]] 0 [[

g

l1
, []]]

0 [[
g

l2
, []]] 0 [[1, [t]]] [[

g

l2
, []]]










Here each entry is to be interpreted as a linear combination of the differential operators di

dti
rep-

resented by [t, ..., t], i ∈ Z≥0. For example, [[C1, [t, t, t]], [C2, [t], [C3, []]] represents the differential

operator C1 d3

dt3
+C2 d

dt
+C3. We find a presentation of the module associated with the linear system

over the Weyl algebra with rational coefficients, i.e. of the cokernel of A:

> M:=Cokernel(A, ivar, RPJ);

M := [[[[[1, []]], 0, 0] = [0, 0, [[1, []]], 0, 0], [0, [[1, []]], 0] = [0, 0, 0, [[1, []]], 0],

[0, 0, [[1, []]]] = [0, 0, 0, 0, [[1, []]]]],

[[0, [[1, [t, t]], [
g

l2
, []]], [[

g

l2
, [t]]]], [[[1, [t, t]], [

g

l1
, []]], 0, [[

g

l1
, [t]]]]],

“Presentation”, 3 + 3 s+
s2

1− s, [1]]

This presentation uses the above notation for differential operators. A more readable representation
of M can be obtained by using the procedure Pres2Diff from the package Janet:

> Pres2Diff(M, ivar, dvar);

[

[ T1(t) = x1t(t), T2(t) = x2t(t), T3(t) = u(t)],

[

( d2

dt2
T2(t)) l2 + g T2(t)

l2
+
g ( d

dt
T3(t))

l2
,

( d2

dt2
T1(t)) l1 + g T1(t)

l1
+
g ( d

dt
T3(t))

l1

]

, “Presentation”, 3 + 3 s+
s2

1− s, [1]

]

Using ’Janet1’ (and hence the Jacobson normal form) it turns out that the cokernel is cyclic and
even free (of rank 1). This only holds in the generic case l1 6= l2 because in the following computation
l1− l2 6= 0 is assumed:

> Pres2Diff(Cokernel(A, ivar, RPJ1), ivar, dvar);

[[ T1(t) = − l1 x1(t)

l2
+ x2(t)], [0], “Presentation”,

1

1− s, [1]]

Now we study the case that the lengths l1, l2 of the pendula are equal:

> R2:=subs(l2=l1, R);

R2 := [( d
dt

x1(t))− x1t(t), ( d
dt

x2(t))− x2t(t),
g x1(t)

l1
+ ( d

dt
x1t(t)) +

g u(t)

l1
,

g x2(t)

l1
+ ( d

dt
x2t(t)) +

g u(t)

l1
]

The system needs to be converted to the differential operator form for the use of homalg:

> A2:=Diff2Op(R2, ivar, dvar);

A2 :=










[[1, [t]]] 0 [[−1, []]] 0 0
0 [[1, [t]]] 0 [[−1, []]] 0

[[
g

l1
, []]] 0 [[1, [t]]] 0 [[

g

l1
, []]]

0 [[
g

l1
, []]] 0 [[1, [t]]] [[

g

l1
, []]]









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Again we find a presentation of the module associated with the linear system over the Weyl algebra
with rational coefficients, i.e. of the cokernel of A2:

> M2:=Cokernel(A2, ivar, RPJ): Pres2Diff(M2, ivar, dvar);

[

[ T1(t) = x1t(t), T2(t) = x2t(t), T3(t) = u(t)],

[

( d2

dt2
T2(t)) l1 + g T2(t)

l1
+
g ( d

dt
T3(t))

l1
,

( d2

dt2
T1(t)) l1 + g T1(t)

l1
+
g ( d

dt
T3(t))

l1

]

, “Presentation”, 3 + 3 s+
s2

1− s, [1]

]

From this presentation the structural properties of the module are not evident at first sight.
However, the Jacobson normal form provides a different presentation with two generators, a torsion
and a free one:

> Pres2Diff(Cokernel(A2, ivar, RPJ1), ivar, dvar);

[

[ T1(t) = −x1(t) + x2(t), T2(t) = x1(t)],

[

( d2

dt2
T1(t)) l1 + g T1(t)

l1

]

, “Presentation”,

2 + 2 s+
s2

1− s, [1]

]

In fact, using ’Janet’ again, we find that the torsion submodule of the cokernel of A2 is generated
by the difference of the positions x1(t), x2(t) of the end points of the two pendula, which is an
autonomous element of the system. This autonomous element satisfies the second order ordinary
differential equation given in the second entry of the result:

> Pres2Diff(TorsionSubmodule(M2, ivar, RPJ), ivar, dvar);
[

[ T1(t) = x1t(t)− x2t(t)],

[

( d2

dt2
T1(t)) l1 + g T1(t)

l1

]

, “Presentation”, 1 + s, [0]

]

7.2 A satellite in a circular equatorial orbit

In this section we apply homalg and OreModules to a linear system describing a satellite in a circular
equatorial orbit. See [11, p. 60 and p. 145] and [12, p. 6 and p. 11] and the Library of Examples at
[6]. We load the package homalg and the ring-specific package OreModules providing procedures for
the algebraic analysis of linear systems over Ore algebras.

> restart;

> with(OreModules):

> with(homalg):

Since we only use the ring-specific package OreModules, we set the default package for homalg to
OreModules:

> ‘homalg/default‘:=‘OreModules/homalg‘;

homalg/default := OreModules/homalg

We define the Weyl algebra Alg = A1, where Dt acts as differentiation w.r.t. time t. Note that we
have to declare the parameters ω (angular velocity), m (mass of the satellite), r (radius component in
the polar coordinates), a and b of the system in the definition of the Ore algebra:

> Alg:=DefineOreAlgebra(diff=[Dt,t], polynom=[t],
> comm=[omega,m,r,a,b]):
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The linearized ordinary differential equations for the satellite in a circular orbit are given by the
following matrix R. These equations describe the motion of the satellite in the equatorial plane, where
the fifth and the sixth column of R incorporate the controls u1, u2 which represent radial thrust resp.
tangential thrust caused by rocket engines (see [11, p. 60 and p. 145]).

> R:=matrix([[Dt,-1,0,0,0,0], [-3*omega^2,Dt,0,-2*omega*r,-a/m,0],
> [0,0,Dt,-1,0,0], [0,2*omega/r,0,Dt,0,-b/(m*r)]]);

R :=










Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r − a
m

0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 − b

m r










We find a presentation of the module associated with the linear system over the Weyl algebra A1,
i.e. of the cokernel of R:

> M:=Cokernel(R, Alg);

M := [[[1, 0, 0] = [0, 0, 1, 0, 0, 0], [0, 1, 0] = [0, 0, 0, 0, 1, 0], [0, 0, 1] = [0, 0, 0, 0, 0, 1]],

[[Dt2mr ω2 + Dt4mr, 2ωDt a, −Dt2 b+ 3ω2 b]], “Presentation”,

−s
3 + s2 + s+ 1

−1 + s
+

2

(−1 + s)2
]

We compute the formal adjoint of the differential operator R:

> R_adj:=Involution(R, Alg);

R adj :=

















−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0 − a
m

0 0

0 0 0 − b

m r

















Some structural properties of the linear system under consideration are determined by computing
the extension modules with values in Alg of the cokernel of Radj . We compute the first extension
module:

> Ext_R(1, R_adj, Alg);











1 =







0
0
0
0












, [1], “Presentation”, 0







From this presentation we see that the first extension module is zero. Therefore, the torsion
submodule of the cokernel of R is zero. Hence, the system of the satellite is controllable.

> TorsionSubmodule(R, Alg);

[[1 = [0, 0, 0, 0, 0, 0]], [1], “Presentation”, 0]

The next three statements demonstrate that this torsion submodule was computed by homalg using
the procedure ParametrizeModule which returns a differential operator P such that the composition
of R and P is zero. P defines a parametrization of the linear system given by R if and only if the
kernel of (.P ) equals the image of (.R), which means that the complex defined by these morphisms is
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exact. If we consider functions in an injective cogenerator (e.g. smooth functions, [5, 17]), then we
have Ry = 0 if and only if y = Pξ for some vector of functions ξ. In general, P defines an embedding
of the biggest possible factor module of the cokernel of R into a free module.

> P:=ParametrizeModule(R, Alg);

P :=











0 b a
0 b aDt

b a 0
b aDt 0

−2Dt b ω rm −3 bmω2 + Dt2 bm
aDt2mr 2 aDt mω











> Compose(R, P, Alg);






0 0
0 0
0 0
0 0







> DefectOfHoms(R, P, Alg);

[[1 = [0, 0, 0, 0, 0, 0]], [1], “Presentation”, 0]

Since the system is controllable, we now check whether the system is flat [9, 5]. Every left-inverse
of the parametrization P gives a flat output of the system:

> S:=Leftinverse(P, Alg);

S :=






0 0
1

b a
0 0 0

1

b a
0 0 0 0 0






Therefore, (ξ1 : ξ2)T = S(x1 : x2 : x3 : x4 : u1 : u2)T is a flat output of the system which satisfies
(x1 : x2 : x3 : x4 : u1 : u2)T = P (ξ1 : ξ2)T . We notice that this flat output exists only if ab 6= 0.
Hence, in the generic case the system is flat. Equivalently, the cokernel of R is free and, in particular,
projective. Let us remember that the full row-rank matrix R admits a right-inverse if and only if
the cokernel of R is projective. By the theorem of Quillen-Suslin, for modules over commutative
polynomial rings, projectiveness is the same as freeness. So, M is projective which we could also have
discovered by succeeding to compute a right-inverse of R:

> Rightinverse(R, Alg);














0 0 0 0
−1 0 0 0
0 0 0 0
0 0 −1 0

−Dt m

a
−m
a

2ω rm

a
0

−2ωm

b
0 −Dt mr

b
−mr

b















Following [12], we modify the description of the control of the satellite in the system. If the rocket
engines are commanded from the earth, then, due to transmission time, a constant time-delay occurs
in the system. Hence, we enlarge the above Ore algebra by a shift operator δ:

> Alg2:=DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
> polynom=[t,s], comm=[omega,m,r,a,b], shift_action=[delta,t]):

The system matrix is given as follows:
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> R2:=matrix([[Dt,-1,0,0,0,0],
> [-3*omega^2,Dt,0,-2*omega*r,-a*delta/m,0], [0,0,Dt,-1,0,0],
> [0,2*omega/r,0,Dt,0,-b*delta/(m*r)]]);

R2 :=











Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r −a δ
m

0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 − b δ

m r











We define a formal adjoint R2adj of R2 using an involution of Alg2:

> R2_adj:=Involution(R2, Alg2);

R2 adj :=

















−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0
a δ

m
0 0

0 0 0
b δ

m r

















We check controllability and parametrizability of the system:

> Ext_R(1, R2_adj, Alg2);




















1 =











0
0
0
0
0
0





















, [1], “Presentation”, 0











We find that the first extension module with values in Alg2 of the cokernel of R2adj is genericall y
the zero module. Equivalently, the system is generically controllable i.e. parametrizable.We continue
to study the structural properties of the system by examining the algebraic properties of the cokernel
of R2. The next step is to compute the second extension module with values in Alg2 of N :

> Ext_R(2, R2_adj, Alg2);

[[[1, 0] =

[
0
1

]

, [0, 1] =

[
1
0

]

], [[0, δ], [δ, 0], [−2ωDt , Dt2 − 3ω2], [Dt2, 2ωDt ]],

“Presentation”,
2 (s+ 1)

(−1 + s)2
]

The second extension module is not zero. Hence, the cokernel of R2 is not projective. Since R2
has full row-rank, this is equivalent to the fact that R2 does not admit a right-inverse:

> Rightinverse(R2, Alg2);

FAIL

In the special case where a = 1 and b = 0, we have the following system matrix:

> R20:=subs(a=1,b=0, copy(R2));

20



R20 :=











Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r − δ

m
0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 0











The a presentation of the first extension module with values in Alg2 of the cokernel of the formal
adjoint of R20 is given by:

> Ext_R(1, Involution(R20, Alg2), Alg2);




















1 =











2ω r
0
0
0
0

4ω2





















, [Dt ], “Presentation” , − 1

(−1 + s)3











Hence, we find a torsion element of the cokernel of R20 which corresponds to an autonomous
element of the satellite system. Using the procedure TorsionSubmodule of homalg this presentation
can be obtained directly:

> TorsionSubmodule(R20, Alg2);

[[1 = [6mω2, 0, 0, 3ω rm, 0, 0]], [Dt ], “Presentation”, − 1

(−1 + s)3
]
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