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Abstract:

One of the basic symmetry results in mathematical physics is Emmy Noether’s
celebrated theorem establishing a correspondence between the symmetries of a
variational problem and its conservation laws. For instance, homogenity in time
yields conservation of energy, homogenity of space leads to conservation of linear
momentum and isotropy of the system implies conserved angular momentum; the
Kepler laws can be deduced in a similar way.

To compute these conservation laws explicitly for any variational symmetries
(also Bessel-Hagen symmetries), one has to make use of so-called higher Euler
operators and thus define homotopy operators, which can be used to compute
an ”inverse” for the divergence of a current. The theory on these complex and
hard-to-use tools was developed just in the last two decades by P.J. Olver and
others.

To make these theories accessible for practical computation, their concepts and
operators have been implemented in the computer algebra system Maple, as a
part of the package jets. As the name of the package already indicates, we have
used the jet notation to describe differential expressions as elements of the jet
space.

On the basis of these implementations, we are now able to compute the conser-
vation laws of a given variational problem explicitly, which will be demonstrated
in two examples: First, we are going to discuss conservation laws in elastostatics
on a two-dimensional elastic body, leading to Eshelby’s energy momentum tensor
and as a by-product several divergence identities. Then, we are going to discuss
the symmetries (up to third order) of the three-dimensional wave equation and
give a complete set of its 94 conservation laws. Similar results have been com-
puted for the four-dimensional wave equation.

Furthermore, we are able to determine all independent second and third order
symmetries of the three- and four-dimensional wave equation generated by suc-
cessive products of recursion operators, verifying and correcting results of Nikitin
and others.
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Introduction

This diploma thesis arose in a project to make the jet theory and notation of
differential equations wider usable by formulating its concepts in the computer
algebra system MAPLE, leading to the construction of the package JETS (see
[BaHa]), originating from several extensions of the DESOLvV package [VuCal, but
soon becoming independent and growing in several directions.

The main target of this work has been to make conservation laws available for
practical computations, such that the one-to-one correspondence between sym-
metries of a given variational problem and conservation laws may be found in
both directions, especially finding the conservation laws of a variational problem
for given symmetries.

With this aim, there have been two parallel parts of this work: On the one hand,
the theoretical part, in which, following the book of [Olv], we have retraced the
way from Noether’s theorem to the explicit conservation laws, which based mainly
on the definition and use of homotopy operators. So this concept of variational
complexes and homotopy was adapted to our needs in this context (i.e. explicit
formulas for horizontal p- and (p — 1)-forms), where we could add a singularity-
respecting case using a variable integration path. All this has been done using jet
notation throughout the work and its applications, which makes several notions
much clearer and offers useful concepts for practical applications.

On the other hand, a great part of this work consisted in implementing all occur-
ring concepts and algorithms in the computer algebra system MAPLE, as a part
of the package JETS that has been developed together with Mohamed Barakat
(see [Bar]). Thus, in this joined project, the whole calculus based on jet nota-
tion was made accessible for electronic computations, including Euler operator,
manipulation of symmetries as vector fields and, of course as well higher Euler
operators, currents and homotopy operators, which finally lead to functions that
will return the explicit conservation laws for given variational problems. So, an
important part of this implementation work has been to prepare a set of universal
tools in jet notation to have a full environment for these calculations completely
in jet notation, which was not prepared in the MAPLE programming language so
far.

These techniques and implementations have been tested on several examples, the
most important amidst being an analysis on elastostatics in two dimension and
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the example of the three and four dimensional wave equation, which has been used
as a kind of standard example throughout this work, mainly because there are
references about several properties of this equation (like symmetry operators and
conservation laws), which could be used to check the implemented algorithms.
These examples have been presented in the form of MAPLE worksheets that can
be found in the appendix.

Thus, the main target of this work was to first review and prepare the underlying
theory, which had been developed in the 70s and 80s of the twentieth century
by Peter Olver and Ian Anderson, using the higher Euler operator first used by
Kruskal in 1970, and where some minor misprints in [Olv] could be found and
corrected. Secondly, we wanted to make the whole concept accessible for prac-
tical computations, which means a useful implementation in computer algebra,
forming a part of the JETS package. Although JETS soon became an independent
package, it had been necessary to use several functions from [VuCal in special
cases.

As a by-product of these algorithmic developments, we were also able to produce
an explicit formula for adjoint operators for differential operators and implement
the celebrated Helmholtz operator that can be used to identify Euler-Lagrange
systems. A complete list of these functions and procedures with the according
notational conventions can be found in the appendix in the form of MAPLE help
pages.

Another main interest of this work lay in the analysis of higher order symmetries,
especially for the three- and four-dimensional wave equation. An algorithm was
formulated and implemented to find the independent symmetry operators of a
given order, whose variational subset leads to further conservation laws, i.e. it
has been possible to compute the whole set of conservation laws up to order three
for the three- and four-dimensional wave equation.! Furthermore, the numbers
of these independent symmetries resulting form these computations in practical
examples, could be used to verify and correct theoretical predictions made by
[Nik] and others.

Finally, it is obvious that there may be further applications of the theory and
algorithms described in this work, which might include the generalization of some
concepts like the homotopy operator and some algorithms to larger cases with
more variables, as well as applications of the present tools to other problems,
stemming from different directions. Thus, we have not only the theoretic con-
cepts and their accessibility through functions in computer algebra, but as well
some immediate algorithms or sequences of algorithms (e.g. the computation of
conservation laws), which even could be used without deeper insight in the theory
beyond, provided the conditions for the input are satisfied.

All implementations and program parts have been written in the computer alge-

'In the four-dimensional case, the third order symmetries had to be restricted to the Poincaré
group, as further analysis exceeds the momentarily available computer power.



bra system MAPLE using a combination of MAPLEV 5.1 and MAPLE6G on Linux
for development. Thus, all procedures are tested on both versions and should be
compatible to later versions, as well. The source code and explanations of the
functions can be found in electronic form in the appendix of this work.
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Chapter 1

Noether’s Theorem

1.1 Jet Spaces

The basic idea of introducing the jet space is to rewrite a system of partial differ-
ential equations (PDEs) as a geometric object determined through the vanishing
of certain (algebraic) functions. Therefore, we have to ”enhance” the basic space
(Euclidian space) X x U, where X 2 R? with coordinates z = (z*,...,2P) de-
notes the independent variables, and U 2 R? with coordinates u = (u',. .., u9)
the dependent variables, such that all occurring partial derivatives can be ex-
pressed.

1.1.1 Definition (Jet coordinates)

For a given smooth real-valued function f : X — U of p independent variables
and with v = f(z) = (f'(2),-.., f%(z)), we can define a jet coordinate of order
k, according to the k-th order partial derivatives of f, by

u5=0; f*(z) = O'f() (1.1)

ale ax]2 e ax]k ’

with J = (j1,...,Jk), |J| = k denoting a multiindex of order k. Note that the
jet coordinates are motivated by the partial derivative of the given function and
are transformed similarly, but do not coincide. (More precisely, their connection
is expressed through the contact of order k with according contact forms). Thus,
these jet coordinates shall be treated just as further coordinates to the basic
space.

As the number of different possible k-th order partial derivatives of the above

function f is given by
_(pt+k-—1
Pr = k )

we need ¢ - py jet coordinates u§ to represent any k-th order derivatives of all
components of f in any point. So Uy = R?P* denotes the Euclidian space of that

13



14 CHAPTER 1. NOETHER’S THEOREM

dimension with coordinates u$ for « = 1,...,q and all J = (j1,...,Jk), |J| =k
multi-indices of order k.
Further, we consider the Cartesian product space

U(n):U1XU2X...XUn,

whose coordinates represent all partial derivatives of order 0 to n.
Obviously, U™ is an Euclidian space of dimension

p+n
q+qp1+...+qpn=q< N ) = gp™. (1.2)

Therefore, denoting a point in U™ by u(™, it has ¢p{™ components ug.

1.1.2 Definition (Jet space)

The Euclidian space X x U™ constructed above with coordinates representing
the independent variables, dependent variables and all jet variables up to order
n, is called the n-th order jet space of the basic space X x U.

1.1.3 Definition (prolongation)

For a smooth function f: X - U : =z f(x) consider its graph {(z,u)|u =
f(z)}. In the following, we are going to identify the function and its graph
through the notation u = f(x) for smooth f. Thus we can definean induced
function pr ™ f : X — U™ given as u(™ = pr (™ f(z), called the n-th prolonga-
tion of f.

It is defined through the set of equations

uj =05 f%(x) (1.3)

for all @ = 1,...,q and all multi-indices J = (j1,...,Jx with 1 < jx < p and
0 < k < n of order up to n. Thus, for each point z in X, pr(™ f(z) is a list of
q-p™ entries representing the values of f and all its derivatives up to order n at
that given point.

1.1.4 Example

Let us now apply the above notation to the case p = 2 and ¢ = 1. Then,
X = R? with coordinates (z', 2%, often written as (z,y) and U = R with the
single coordinate u. Constructing the jet spaces, we get U; = R? with coordinates
(g, uy) and Uy = R® with (Ugg, gy, Uyy). Thus, we have UR =UxU, xU, 2RO,
which has coordinates u(? = (U; Uz, Uy} Ugg, Ugy, Uyy) Tepresenting the derivatives
of u up to order 2.

Similarly, for a smooth function given as u = f(x,y), the second prolongation
u® = pr @ f(x,y) takes the form

2 2 2
pr@)f(iv,y)=<f;af or o°f &1 af>.

0z’ 9y’ 0z’ Bzdy’ dy?
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Notational convention: In lists describing prolongations, also called n-jets, jet
coordinates resp. partial derivatives of the same order are usually separated by
commas, while those of different order are separated by semicolons.

1.2 Variational Calculus

As before, let us consider the Euclidian space X x U with corresponding coordi-
nates; further be 2 C X open and connected with a smooth boundary 0f).

1.2.1 Definition (variational problem)
Find all extrema (maximals and minimals) in a class of functions v = f(x) defined
over () of a given functional

L] = /Q L(z, u™))da. (1.4)

The function L(z, u(™) is called the Lagrangian or Lagrange density of the varia-
tional problem and is usually deduced from the physical properties of the consid-
ered system. In many cases, a standard approach to find the Lagrangian would be
to take the difference of kinetic energy and potential of a mechanical system. The
Lagrangian is a smooth (C*°) function (horizontal p-form) depending on indepen-
dent, dependent variables and jet coordinates up to order n. The precise class of
functions on which £ shall be extremalized, depends on the specific conditions of
the physical problem, such as boundary conditions or differentiability.

1.2.2 Example (curve length)

A simple example of the above notation would be to determine the shortest curve
between two points (a, c) and (b, d) in a plane. So, if that curve is given as graph
of a function u = f(z), our problem is described by the functional

L] = /b\/1 s, (1.5)

which would be minimized over the space of C'-functions with the properties
f(a) =cand f(b) = d.

If we want to solve such variational problems, we need an approach giving us a
way to determine extremals of a given functional. For one-dimensional problems
and constant functions, this leads to the vast class of exercises known as ”mini-
max-problems” or ”extremal value problems” from school, being solved by a
simple differentiation.

More general, in finite dimensions, the extrema of a real-valued function f : R* —
R can be determined by describing those points where the gradient vanishes. So,
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the classical approach to find the gradient (locally) is to examine f under ”small”!
changes in z. Using the standard inner product (z,y) on R, it leads to

(Vf(z),y)= d% . [z +ey). (1.6)

Transferring this concept to functionals L]u] and replacing the standard inner
product by the L? inner product for vector-valued functions, this leads to the
following definition:

1.2.3 Definition (variational derivative)
The variational derivative dL[u| (a list of g entries of the variational problem
L[u] is uniquely defined by

4 gffven = / SL1/ (@)] - n(a)dz, (1.7)

e=0

where u = f(z) is a smooth function on Q and 7 is smooth with compact support
in €.

On the basis of this definition, we get the following proposition:

1.2.4 Proposition
If u = f(z) is an extremal of the variational problem L[u), it follows

SL[f(z)] =0 (1.8)

for all x in Q). If we want to stress the properties of f as a function, we could
also write the above equation like (0L[f])(z) as a function in x, whicle the first
notion is referring to the graph.

PROOF. For any n with compact support in 2 and f as above, f +en is in
the same function space as f. Thus, as f is an extremal of L, the functional
L[f + en], considered as an expression in ¢, has an extremum at € = 0. Hence,
1.7 has to vanish for any 7 of compact support, such that the claim holds for
any = € (). The same arguments also leads to the uniqueness of the variational
derivative 0 L. O

On the way to a general formula for the variational derivative, we begin with
exchanging integration and differentiation of the given expression (which is pos-
sible due to the smoothness of all functions) and have

d
L[f+677]=/(2£

L As such terms like ”big” and ”small” always depend on the actual frame of reference and
are not invariant under rescaling, this has to be understood strictly infinitesimally.

L(z,pr (")(f +en)(x))dz. (1.9)

e=0

de

e=0
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Using the Notation of u§ as partial derivatives of u® with respect to the multiindex
J (and analogue d;n* for the partial derivatives of n®), this equation can be
rewritten as

tlen= | { a—L(w,pr(")f(x))-3J77"($)}dw- (1.10)

ou%
a,J J

d
de
So this equation can be integrated by parts using the divergence theorem with

the boundary terms vanishing.
Before proceeding, we need the following definition:

1.2.5 Definition (Total derivative)
(Throughout this work, the sum is always to be taken over equal upper and lower
indices (summation convention).) The expression

0 0
Dy =Dy = — +u,, — 1.11
Ot +UJ+1¢ 8,“? ( )

denotes the total derivative with respect to z%, i = 1,...,p, where J + 1; :=
(j1,---5Ji+1,...,7p). Further define

Dy := (D))" -+ (Dy)’. (1.12)
So, one gets for example
Ugzy = Dwuwy = Dyuww = wauy = D:c:cyu-

1.2.6 Remark
In the JETS package [BaHa|, the total derivative of a differential expression is
available as totalder, while the partial derivative is implemented as partder.

Further, as L depends on the z through the function u = f(z), we get the identity

0 (0L
. =D
or’ (6113) v

where D; denotes the total derivative as defined above. Therefore, the result can
be finally rewritten as

L slrren=[ {Z [Z(—D»aajg(x,wv(x»] n“(:v)}dm- (1.13

de
= a=1

Comparing the latter equation with 1.7, this implies the following useful defini-
tion:
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1.2.7 Definition (Euler operator)
The Euler operator E is defined as a differential operator with ¢ entries given as

Eu= (D)o (114

where the sum is taken over all multiindices J = (ji,...,jk) with £ > 0,1 < j; <
pand (—D); = (-1)*D;.

1.2.8 Remark

Although the Euler operator is written out as a sum over infinitely many terms,
its application to a Lagrangian L will only have finitely many summands, because
L depends on only finitely many jet coordinates, so most partial derivatives will
vanish. This principle of ”sorting out” those derivatives which might yield a non-
vanishing contribution to the result was also used in the implementation of this
operator in the JETS package [BaHa]. That function is (obviously) called EULER
and was designed to handle as well higher Euler operators which shall be treated
later.

Thus, comparing the equations 1.7 and 1.13, we easily see the identity dL[u] =
E(L) with E(L) = (Ey(L),-..,E4(L)). So, the above proposition 1.2.4 can be
simply rewritten as

1.2.9 Theorem (Euler-Lagrange equations)
Any smooth extremal v = f(z) of the variational problem Llu] is necessarily a
solution of the q¢ Fuler-Lagrange equations

E(L)=0 i.e. E,(L)=0 forall 1<a<y. (1.15)

Note that the vanishing of Fuler-Lagrange equations is a necessary, but not a
sufficient criterion for extremals, as in practice the critical points of the functional
and special solutions from the boundary conditions have to be taken into account
which might yield others than the previous smooth solutions.

1.2.10 Example
As a simple example, consider the case p = ¢ = 1 with a single function v = f(x).
For a n-th order variational problem, the Euler-Lagrange equation takes the form

oL oL oL oL
——D, D? — e+ (=1)"D? :
ou Ou, + T OUgy +(=1)"D; OUgn

If this case is further restricted to a first order variational problem with L =
L(z,u,u;), the Euler-Lagrange equation takes the form usually known from

physics courses:

0=E(L) =

_ 0L oL
~ Ou T Ouy
Finally, while the Lagrangian L was the equation describing the properties of a

variational problem, the Euler-Lagrange equations E(L) = 0 shall be that set of
differential equations which allow further studies of the problem and its solutions.

0
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1.3 Variational Symmetries

As a next step, we are going to infere some group methods into the calculus of
variations. Therefore, we need a useful notion to describe the symmetry of a
functional £, defined as above, where the considered groups will be some local
transformation groups acting on an open subset of the domain, on which the
functional is described. The purpose of this concept will be, roughly speaking, to
transform smooth functions u = f(z) over an appropriate subdomain of € into
other smooth functions & = f(&) = g- f(Z) for some g in the local transformation
group GG. So we are going to define such symmetry groups GG in a way that func-
tionals £ are preserved for above f on a certain subdomain. So, more precisely,
we can state:

1.3.1 Definition (variational symmetry)

A local group of transformations G, which acts on a subset M C QyxU C X xU
is called a group of variational symmetry of a functional L[u], if for any subdomain
Q with closure Q) C Qy, u = f(x) is a smooth function on Q with its graph in M,
such that @ = f(Z) = g- f(Z) for an g € G is a well-defined function defined over
2, and, consequently

/Q L(z,pr ™ f(2))dE = /Q Lz, pr ™ f(z))da. (1.16)

A simple example for a variational symmetry, which holds in many of the con-
sidered problems, will always be a translation in one coordinate:

1.3.2 Example
So, if we consider the one-dimensional first-order variational problem

Llu] = /ba L(z,u,uz)dz,

for X = R, the group of translations defined through (z,u) — (x+¢,u) will be a
variational symmetry group of £, if L does not (explicitly) depend on x. Thus,
with Z = z +¢ and 4 = u, any smooth function u = f(z) defined over an interval
[c,d] C (a,b) leads to @ = f(Z) = f(Z—e), which is defined on [¢, d] = [c+¢, d+€],
still being a subinterval of (a, b) for a sufficiently small . Finally, we can verify
equation 1.16 using a simple shift of variables:

/ L(F(@), F'(#))dz = / L(f(G - o), (& — ))dit = / L(f (@), f'(2))da

Before deducing a handy criterion to check the variational properties of a given
symmetry, we first need some notation to describe the symmetries themselves.
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For this reason, we are going to shift our view from the transformation groups
themselves to the corresponding vector fields, i.e. let us consider the vector field

+ ¢%(,u) 0

V:£Z(.Z',U) %,

o (1.17)
defined on an open subset M C X x U. Thus, the corresponding one-parameter
group is given through g. = exp(ev) and v is called the infinitesimal generator of
the symmetry. Note that the functions £ and ¢* fori=1,...,panda=1,...,q
may depend on the dependent and independent variables, but not on higher
order jet coordinates. The latter would produce generalized vector fields and
corresponding higher order symmetries which shall be treated later.

1.3.3 Remark
This concept of using vector fields has also been implemented in the JETS package,
where the notation for the infinitesimal generator 1.17 has to be entered like this

€4 [T, - - [€7 2”1, [0, [u']), -, [, [w]]].

So, for example, the infinitesimal generator of a simple rotation in the (z,y)-
plane,

v = mg 2
- oy Y or
will, in JETS notation, have the form [[x, [y1], [-y, [x]11].

If we want to use this concept of symmetries for differential equations, we also
need a prolongation of the vector fields on the n-th jet space, which shall be the
generators of the prolonged group action the corresponding jet space. Thus, we
can define:

1.3.4 Definition (prolonged vector field)

Let v be a vector field on an an open subset M C X x U with corresponding
local one-parameter group exp(ev). The infinitesimal generator of the prolonged
one-parameter group pr ™[exp(ev)], being a vector field on the n-jet space M(n),
is called the n-th prolongation of v and will be denoted by pr™v.

So, the prolongation of a given vector field can be explicitly calculated with the
following formula:

1.3.5 Theorem (General Prolongation Formula)
The n-the prolongation of a vector field v, defined as in 1.17 on an open subset
M C X x U is defined on the jet space M™ C X x U™ and given by

g
prWy = v+ Z Z ¢”"*(z, u("))%, (1.18)
T

a=1 J
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where the sum is taken over all multi-indices J = (1, ...,k with 1 < j; < p and
1 < k < n, while the terms ¢* are defined as follows:

¢”"(x,u™) = D, (qsa - Z&iu?) +) &l (1.19)
=1 =1

where u3,; denotes the jet coordinate obtained by ou%/0z', i.e., the appropriate
variable is attached to the multi-index J and Dj s the total derivative as defined
earlier.

The proof of the general prolongation formula is more or less an infinitesimal
version of the chain rule applied to vector fields. The detailed and complete
version can be found in [Olv], page 113ff.

Hence, a closer look at equation 1.19 leads to the following definition which will
be important in practical dealing with vector fields and symmetries:

1.3.6 Definition (characteristic)
The chamcteristic of a vector field v, given as in equation 1.17, is defined as the

g-tuple Q(z,uM) = (Q'(z,u™), ..., Q%(z,uM), where
p .
Q%(z,uY) == ¢%(x,u) — Z{”(x,u)u?. (1.20)
i=1
Using this definition, equation 1.19 takes the form

¢”"(z,u™) = D,Q* + Zfluj,i- (1.21)

=1

Thus, the general prolongation formula 1.18 can be rewritten as

r(”)v—ZZDJQO‘ +Z§z (8 1+ZZ Utiga ) (1.22)

a=1 J

As we easily recognize the definition of the total derivative in the latter bracket,
we may now write the prolongation as

ZZDJQa +Z§Z i (1.23)

a=1 J

and, even further, write down the prolongation in its compact, characteristic
form:

p
prv =pr™Wvy +> " ¢'D;, (1.24)

=1
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where

Vg = ZQa z,ut 0 (1.25)

8u°‘

and, consequently

"y = ZZDJQQBUJ. (1.26)

a=1 J

These latter concepts already show, in how far the definition of the characteristic
is useful and practical for writing out prolongations of vector fields.

1.3.7 Remark

Of course, prolongations and characteristics of vector fields (and also generalized
vector fields) are also available in the JETS package for practical computations.
The prolongation can be accessed through the command prolvec, while a char-
acteristic is calculated with vec2char.

After this introduction on ideas about vector fields, we shall now return to the
concept of variational symmetries and have another look at the criterion for
variational symmetries, 1.16. This equation has to be understood as an identity
of volume forms (functional p-forms) with the transformation

dz = det (gx) -dzx,

according to the transformation theorem. Thus, the trace of the above transfor-
mation matrix can be rewritten as a total divergence, which leads to the following
criterion for variational symmetries, after a small, but very important definition:

1.3.8 Definition (Total Divergence)
The total divergence of a p-tuple P of smooth differential functions P*(z, u(™) is
defined as

Div(P) := i D; Pi(z, u™), (1.27)

where D; is the total derivative with respect to z°.

In the JETS package, this function is implemented as Div.
As a simple exmaple, consider the 2-tuple P = (uw,,uu,). Thus, the total
derivative is

Div(P) = Dy(uuy) + Dy(uug) = 2uuy, + 2ugu,.

1.3.9 Theorem (Infinitesimal Criterion of Invariance)
A connected transformation group G, acting on an open subset M C Qo x U is a
variational symmetry group of a given functional Llu), if and only if

pr ®v (L) + LDivé = 0 (1.28)
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holds for all infinitesimal generators v in G, defined as in 1.17 and for all
(z,u™) € M™ where Div¢ is the total derivative D€ + ...+ DyEP.

A detailed proof of this theorem can be found in [Olv] page 257f, which is mainly
based on the above transformation.

Further, it is obvious that any symmetry group G of a given functional is also a
symmetry group of the according Euler-Lagrange equations E(L) = 0 (but not
the reverse), which will be important for the practical use.

Another obvious property is the fact that each linear combination of variational
symmetries remains variational, as a closer look at the infinitesimal criterion of
invariance and at the prolongation formula immediately shows.

On the basis of the infinitesimal criterion of invariance, the term of a variational
symmetry can be slightly generalized (or, in some ways, relaxed) with the follow-
ing definition:

1.3.10 Definition (divergence symmetry)
A vector field v as in 1.17, acting on M C X x U is called an infinitesimal diver-
gence symmetry or Bessel-Hagen symmetry or generalized variational symmetry
of a functional L[u], if there is any p-tuple of functions B = (B!,..., B?) with
the property

pr ™v (L) + LDiv¢ = Div(B) (1.29)

for all z,u as above.

In how far this generalization is useful and practical will soon become obvious.
For practical testing, we still need the following property, which can be proved
by some technical, but still elementary computation:

1.3.11 Remark
An expression (functional p-form) is the divergence of some p-tuple if and only if
it is annihilated by the FEuler operator, i.e.

L=Diw(B) &  E(L)=0.

A detailed proof of this remark can be found in [Olv], page 252f.

Before giving the detailed algorithm to find those variational (and divergence)
symmetries from a given list, we shall first explain the purpose of this step and
see their further relevance.

1.4 Conservation Laws

As one might already know from physical analysis of, e.g. mechanical, problems,
a good characterization and useful piece of information can be the knowledge of
those physical properties, which remain stable under changes of time or place,
which are called conservation laws. In physics, usual examples for such conserved
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quantities are in many examples terms like energy, linear momentum or angular
momentum. While the classical approach to these conservation laws normally
goes through observation and physical intuition, we are going to use mathematical
concepts instead of experimental insight.

Therefore, we first need a reasonable definition for such conservation laws:

1.4.1 Definition (Conservation Law)

For a given system of differential equations A(z,u™) = 0 (e.g. the Euler-
Lagrange equations E(L) = 0), any p-tuple of smooth, differential functions
P = (P'(z,u™),..., PP(z,u™)) with the property

Div(P) =0

on all smooth solutions u = f(x) of A = 0 is called a conservation law of those
differential equations.

In dynamical problems, where the independent variables can be separated in a
time-variable (usually called ¢) and some spatial variables (usually called z, y, . . .),
the above term can be split up into D, T + DivX = 0, where T is called the
conserved density and X the conserved flux. In many examples, especially one
of these will be of special interest, but not so much the whole conservation law
itself.

The above criterion for conservation laws can now be rewritten in the following
way:

As one can prove by some technical computations and substitutions, for any
conservation law P of a system of differential equations A(z,u™) = 0, Div(P)
vanishes on all solutions if and only if

Div(P) =) Q"'D;A, (1.30)

v,J

holds for all z,u and for some functions Q" (z,u(™). The right hand side of this
equation may now be integrated by parts, which is equivalent to interchanging
the order of @)s and Ds in the above equation, i.e. for each 1 < j < p, we have
Q" D;A; = D;j(Q"A,) — D;(Q7)A,. Thus, equation 1.30 can be rewritten as

!
Div(P) = Div(R) + Y Q"A, =Div(R) + Q- A,
v=1

where Q” = Y (—D);Q”" and R is a p-tuple, which is not needed explicitly here.
T
Hence, we can now replace P by a (different) conservation law P — R and get

Div(P) = Q- A, (1.31)
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which is called the characteristic form of a conservation law, and @ is called the
characteristic of the conservation law P.

From these last steps, it is obvious that conservation laws are usually not uniquely
determined, but only up to a certain degree of additional ”trivial” conservation
laws. Such ”triviality” of conservation laws occurs when an expression fulfills
the requirements of definition 1.4.1, but is not a really ”useful” conservation law.
Firstly, this may happen, if the divergence vanishes on all solutions, just because
P itself vanishes for all solutions of the given system. A second type of such
trivial conservation laws are the so-called null divergences, expressions, whose
divergence vanishes for all smooth functions u = f(z), not only on solutions of the
given differential equations, but identically. These may lead to some interesting
identical, but have obviously no further significance as specific conservation laws,
hence the term "trivial”.

So, we have to keep in mind that conservation laws are always only uniquely
determined up to trivial conservation laws of the two types mentioned above.
Finally, we are now able to link the two concepts of variational symmetries and
conservation laws by using the following important theorem which was formulated
by Emmy Noether in 1918. According to the symmetries described above, the
theorem will first be proved for classical symmetries and later be adapted to
symmetries of higher order:

1.4.2 Theorem (Noether’s Theorem)
Consider a variational problem Lu] = [ L(z,u™) with a local one-parameter
group of (variational) symmetries G with infinitesimal generator

6%, u)

v:§i(x,u) %

ozt

and corresponding characteristic of v
p .
Q(w,ulV) = ¢%(z,u) = Y 'z, u)uf
i=1

Then Q = (Q',...,QY%) is also the characteristic of a conservation law of the
Euler-Lagrange equations E(L) = 0 of the above variational problem.
Thus, there ezists a tuple P(z,u™) = (Py,..., P,) such that

Div(P) =Q - E(L) (1.32)
15 the characteristic form of a conservation law for the FEuler-Lagrange equations.

PROOF. In the present version, the theorem is not difficult to prove. So
we start by substituting the general prolongation formula in characteristic form,
equation 1.24 into the infinitesimal criterion of invariance, equation 1.28. Thus,
the expression

0 = pr™v(L) + LDiv¢ (1.33)
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takes the form

0=pr® +Z§’DL+LZD§’ (1.34)

The two latter summands can now be combined using the Leibniz rule (product
rule), yielding
0 = pr vy (L) + Div(LE). (1.35)

Using 1.26 the first term of this equation can now be integrated by parts and we
get

S Tt S o8 4Div(d) (130

a=1 J

for some tuple of functions A = (A',..., AP) depending on @, L and their deriva-
tives.
As we recognize the definition of the Euler operator in the last equation, it follows

pr Wvo(L) = Q - E(L) + Div(A), (1.37)
and hence, returning to the whole expression, equation 1.35 can be written as
0=Q-E(L)+ Div(A + L¢), (1.38)
which obviously satisfies 1.32 for
P=—(A+ L&). (1.39)

O

As one can easily see, the above proof works also for divergence symmetries

(Bessel-Hagen symmetries) as defined in 1.3.10. In the beginning, the infinites-

imal invariance criterion 1.33 is replaced by equation 1.29, which simply means

that the whole proof goes through with Div(B) instead of 0 as left hand side for
some tuple of functions B. Consequently, 1.38 takes the form

Div(B) = Q - E(L) + Div(A + L¢), (1.40)

and this satisfies the requirements for a conservation law
P =B - (A+ L¢). (1.41)

So, if one wants to find the explicit conservation laws of a given variational prob-
lem, one has to compute the values for A and B in the above formula. This
calculation mainly consists of finding the ”anti-divergence” of given terms, which
is done using homotopy operators and will be discussed in the next chapter.

But before applying Noether’s theorem itself, it is necessary to find the relevant
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symmetries. So, for a given problem, i.e. all we know about the variational
problem is the Lagrangian L and the boundary conditions of the functional L,
we should first determine all symmetries. This is, in our practical examples,
usually done with the DEsOLv package [VuCal, providing a PDE-solver for our
purposes. More precisely, we first determine the defining equations of the point
symmetries of the Euler-Lagrange equations given in infinitesimal functions (with
gendef. As a next step, it is tried to solve the Euler-Lagrange equations (using
pdesolv), which is usually not possible in general, so a set of solutions in terms of
the above infinitesimal defining equations is returned. Finally, we can determine
the Lie vectors (infinitesimal generators of the point symmetries) (with genvec)
from the solutions of the infinitesimal functions. These Lie vectors now have the
format which can be further used in the commands of JETS.

Another approach to find the complete set of symmetries can be the direct use
of the JETS command gengen with appropriate parameters.

After determining all occurring point symmetries, we have to find those which are
relevant for finding conservation laws, i.e. we need the variational and divergence
symmetries. For this problem, we are not only going to look at the symmetry
generators themselves, but it is necessary to consider the vector space generated
by all these symmetries and split it up into the subspace generated by the vari-
ational resp. the divergence symmetries. This step is necessary, as the input
list of symmetries is not uniquely defined, but only up to the generated vector
space, i.e. we also have to examine linear combinations of the given vectors to
find a maximal set of independent variational (and divergence) symmetries. This
operation is done with the following algorithm implemented as symsplit in the
JETS package:

1.4.1 Algorithm (symsplit)

input: Lagrangian L, list of symmetries in vector field notation

output: (a) a basis of the variational symmetries, (b) a completion of (a) to a
basis of the divergence symmetries, (c¢) the remaining symmetry generators.
algorithm:

1. Produce a list of test terms applying the left hand side of 1.28 (infinitesimal
criterion of invariance) to all given vector fields.

2. Filter out the variational symmetries in given form and remove them from
the remaining list (by checking the test list for 0 entries).

3. find non-trivial linear combinations of variational symmetries (i.e. solve a
linear system of equations on the test terms in the list from step 1 with a
Gaussian elimination).

4. make a suitable basis change to separate the linear combinations from the
last step and remove the variational symmetries from the test list.
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5. Apply the Euler operator to the remaining test entries.
6. repeat steps 2, 3 and 4 to determine the divergence symmetries.

7. return the basis of the variational symmetries and the contributions for
divergence and further symmetries in linear independent form.

To make the above rough description of the algorithm somewhat clearer, we
need to state a few remarks:

1.4.3 Remark
In step 1 of the algorithm, the original invariance criterion 1.28 is slightly altered
to reduce the computation effort for large lists of symmetries: The left hand side

of the original criterion
pr v (L) + LDivé =0

can be rewritten, using the characteristic form of the vector field, as

p

prvo(L)+ ) Di(€'L)

=1

and, with a further identity, as

Dr(Q) + Div(L¢),

where Dr,(Q)) denotes the Fréchet derivative of L applied to the characteristic of
v. The detailed definition of the Fréchet operator shall be given in chapter 3.
The advantage of this notion, comparing with the original criterion, is here that
we only have to compute only one explicit prolongation (the Fréchet derivative)
for the whole input list, compared with a prolongation of each single vector
field. Thus, the operations which have to be done for any generator can now be
reduced to an application of the operator to a characteristic and the calculation
of a divergence. On larger examples, this may reduce the computation effort
notably.

The list of values produced in step 1 using the above prolongation formula ob-
viously consists of entries, which are either 0 or some differential expressions in
expanded form (i.e. written as sum, not as product), while the correspondence
between these entries and the symmetries they stem from has to be preserved
throughout the computation. Therefore, step 2 makes it very easy to filter out
those symmetries that are obviously variational, but there usually remain further
ones hidden in linear combinations. To solve this problem, we have to look for
nontrivial linear combinations of such list entries to produce further variational
symmetries. To achieve this, the differential expressions of our test list are tran-
scribed as rows of a coefficient matrix in the following way: The occurring jet
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variables (or products of those) are considered basis elements, in which the co-
efficient matrix is dynamically generated. This means, as the algorithm scans
through the list entries one by one, the basis of occurring variables is also dy-
namically augmented with any new jet variables that had not appeared in the
list entries before. Through this technique, the generated coefficient matrix will,
roughly speaking, resemble a lower triangular matrix which is typically also very
sparse.

After producing this coefficient matrix, we are not only looking for linear depen-
dent rows, but we also want to parameterize them in terms of the original basis of
vector fields (which were corresponding to the list entries and consequently to the
rows of the matrix). So we will also need the basis transformation to reproduce
the variational symmetries. This is done by transforming the coefficient matrix
simultaneously with an identity matrix:

cM I, |, (1.42)

where C'M denotes the coefficient matrix of the above list of differential expres-
sions, and I,, the identity matrix with as many rows as the coefficient matrix. On
this matrix, whose entries should be numerical expressions, typically even small
integers, we shall now perform a simple Gaussian elimination, leading to a matrix
of the following shape: /

A B

0 ... 0 . (1.43)

R C
\0 ... 0
In this gauss-reduced matrix, the submatrix A is an upper triangular denoting
the test prolongated values of the non-variational symmetries, which is not of
further interest. The submatrix B, however, gives the composition of the non-
variational symmetries in terms of the original symmetries, expressed in the rows
of the input matrix C M. Therefore, we will need B for reducing the basis by the
variational compounds. The lower left 0-matrix indicates by its rows the newly
found variational symmetries as linear combinations of given symmetries, while
the rows of the submatrix C specify these linear combinations in the original
terms.
Thus, the next step will be to add these linear combinations from the rows of C
(which are linearly independent due to the Gaussian elimination) with the basis
of the vector fields to the list of variational symmetries, which, together with the
direct variational symmetries from the first step, yields us a complete basis of
the variational subspace. For the remaining vectors, we now have to reduce the
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basis by as many vectors as we have added to the variational list. As we want
to preserve as many basis vectors as possible in their original form (to keep the
output as readable and similar to the input notion as we can), we shall find the
zero columns in the submatrix B and remove the corresponding vectors from the
remaining basis. It is obvious that those elements don’t give any further contri-
bution to the subspace spanned by non-variational symmetries, and from some
concepts of simple linear Algebra like Steinitz’ basis exchange theorem, it follows
that we will get a proper basis by these means. Because of some dimension esti-
mations we easily see that the total number of vectors shall also be preserved.
So, after reducing the number of basis vectors for further examination and hav-
ing separated the variational symmetries in notation of the given symmetries, we
shall now check the differential test expressions for divergence properties, which
is done with remark 1.3.11 (step 5 of the algorithm) and repeat the above calcu-
lations for the new, smaller coefficient matrix, to find the variational symmetries
and the remaining subspace.
In most practical examples, it will be the case that a majority of the given sym-
metries shall turn out to be variational, so that the original basis is dramatically
shortened and the second step (for the divergence symmetries) takes just a frac-
tion of the effort for the first one. Thus, the main consumption of computer
resources in practical examples will be the construction of the first coefficient
matrix and its Gaussian elimination.
A similar, but a little more sophisticated algorithm will occur when dealing with
higher order symmetries and shall be treated in a later chapter. As an example
consider the three-dimensional wave equation, which can be found at [ex2]
Another approach to examine the behaviour of a problem can be to impose
certain symmetries (e.g. homogenity, isotropy of some material) and model the
Lagrangian in an appropriate way, as it is shown in the example about the de-
formation of an elastic body [ex1].
So we are now able to find the variational symmetries of a given problem and
can relate them to the conservation laws according to Noether’s theorem. In the
next chapter, we shall develop a general concept to compute the anti-divergence
of a given expression, which allows us to compute the conservation laws for given
symmetries and Lagrangians explicitly.



Chapter 2

The Homotopy Operator

In this chapter, we are going to show how to compute the conservation laws de-
termined by Noether’s theorem explicitly, using homotopy operators, which make
available something like an ”anti-divergence” to a known divergence expression.
These algorithms have been implemented in the functions classcons for classical
symmetries (i.e. variational symmetries) and conservation in the general, but
also more complex case, which also works for divergence and generalized symme-
tries.

Thus, before defining the total homotopy operator itself, we need a few prepara-
tions:

2.0.4 Definition (sublists and differences of multi-indices)

Let I and J be multi-indices as defined earlier. Then J is called a sublist of I
(denoted J C I), if and only if all indices in J also appear in I with at least
the same multiplicity. (Of course this is also true for I = J.) In that case, the
difference of the two multi-indices, J \ I, is defined as that multi-index obtained
by removing each single indices in J from I, respecting the multiplicity.

2.0.5 Example

Consider the multi-index [ = (z,z, z,vy, 2,2). Then J = (z,z, z) is a sublist of I,
but not K = (z,y,y), because in the latter case, the multiplicity of y is higher in
K than in I (2 vs. 1). Further, the difference is I \ J = (z,v, 2).

2.0.6 Definition (multinomial coefficient)
For multi-indices I and J with the property J C I, the multinomial coefficient is
defined in analogy to the binomial coefficient for integers as follows:

G) - ﬁ (2.1)

where I! is defined as the product of factorials of the occurrence of the single
variables in the multi-index I. If .J is not a subset of I, the multinomial coefficient
is defined as 0.

31
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2.0.7 Example

Consider the multi-indices I = (z,x,z,y,2,2) and J = (z,,2) as in the last
example. Then we get I! = 3!-1!-2! = 12, since there are three =, one y and
two z in I, and analogue J! = 2!-1! = 2, (I'\ J)! = 1. Thus, the multinomial
coefficient is % = 6.

These two definitions may seem a bit unmotivated and technical at the moment,
but will soon prove to be a useful and necessary tool for some differential opera-
tors:

2.1 Adjoint Operators

First, we need the concept of adjoints for given differential operators of arbitrary
order, which are usually written as matrix operators:

2.1.1 Definition (adjoint operator)
Consider the differential operator given as

D= ZPJ[U]DJ

for differential functions P; and the sum taken over all multi-indices .JJ. Then the
differential operator D* is called its (formal) adjoint operator, if it satisfies the
equation

/QP-“DQd:z::/QQ-D*de, (2.2)

for all differential functions P and () vanishing for v = 0, for each domain 2 C R?
and every smooth function u = f(z) with compact support on €.

To make this definition applicable in practice, we have to write the adjoint op-
erator in an explicit, algorithmic form that makes it possible to calculate it for
a given matrix operator D. The general formula for the adjoint operator of D,
defined as above, is given in the following proposition:

2.1.2 Proposition (Calculating adjoint operators)
For a differential operator D =) ; P;[u|D;, the according adjoint operator can
be calculated with the following formula:

D =) ()Y G) Dn Py Dy. (2.3)

J JCI

In this formula, the first sum is taken over all multi-indices for which the dif-
ferential functions P in the above definition do not vanish, while the second
sum is taken over all sublists J of the multi-index I. Furthermore, we use the
multinomial coefficient and difference of multi-indices as defined before.
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This general formula has also been used for the implementation in the JETS
package in the function Adjoint. PROOF. An integration by parts of the
defining property for adjoint operators, equation 2.2 leads to the formula

D=3 (-D); - P (2.4)

J

for all multi-indices J. Thus, the problem of computing the adjoint operator is
reduced to determining the inner product of a total derivative and an arbitrary
(differential) expression. So, it follows from the product rule that

D, - f(l-,u(")) = f(xa u(n))Dw + Dwf(xa u(n))’ (2'5)

which can be generalized through induction over n to the following expression for
successive total differentiation:
n

D," - f(x, u(")) = Z <7Z> D, f(x, u(")) . D, (2.6)

1=0

for any positive integer n. To generalize the above for multi-indices containing
different variables, we can rewrite 2.5 in the way that we apply only one entry of
the multi-index, leaving the rest untouched:

Dy - f(z, U(")) = Dl\i : (f(ﬂ% U("))Dz’ + D;f(z, U(n))) ) (2.7)

which follows directly from the product rule for any element i of the multi-index
I. Hence, we are now able to combine the latter two results, equation 2.6 and
2.7, to the following expression, using an induction over the split up multi-index,
to obtain

Dy flz,u™) =" <I> Dp f(z,u™) - Dy, (2.8)

JcI J

containing the multinomial coefficient defined above and summation over all sub-
sets of the given multiindex. Substituting the last result into equation 2.4 imme-
diately yields the general formula. Il

2.1.3 Remark

Note that for general differential operators in matrix notation the adjoint is cal-
culated entry-wise on the transposed matrix, i.e. we have Dj; = (D;;)*. A
differential operator shall be called self-adjoint, if D = D*, and it is called skew-
adjoint, if D = —D*.

An important application of the adjoint operator is the adjoint Fréchet derivative:
For a given p-tuple of differential functions, P € AP, the adjoint of its Fréchet
derivative has the form

(Dp)un = S(=D); - gg (2.9)

J
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for 1 < pu<gqgand 1l <wv <gq. In the above formula, we notice the resemblance
to the Euler operator, leading to the following identity, which is a useful way to
calculate Euler expressions in several cases:

E(P) = D5(1). (2.10)

Another important application of the adjoint operator is the inverse problem of
variational calculus, i.e. to determine if a given system of differential equations
is an Euler-Lagrange system of equations or not. This can be checked with the
following operator, implemented in the JETS package as Helmholtz:

2.1.4 Definition (Helmholtz operator)

For a given ¢-tuple of differential expressions A%, stemming form the system of
differential equations A = 0, the Helmholtz operator is given by the difference of
its Fréchet derivative and its adjoint, i.e.

F((A) := Da — D. (2.11)

So we can decide with the following criterion, if a given set of equations are the
Euler-Lagrange equations for some variational problem:

2.1.5 Remark (Helmholtz conditions)

A given set of differential equations A = 0 is a set of Euler-Lagrange equations of
some variational problem, if the Helmholtz operator vanishes identically, H(A) =
0, i.e. if the Fréchet derivative of A is self-adjoint.

Note that the other direction of the above statement does not hold, because
the Helmholtz operator is not invariant under minor changes of the system A,
although they preserve the solutions, e.g. exchanging the order of the single
equations. Thus it might be difficult to find a strong criterion to identify such
variational structures in a given system of equations.

2.2 Currents

On our way to an explicit expression for computing conservation laws, we shall
now have another look at the proof of Noether’s theorem, especially at the partial
integration of formula 1.37. To ressolve the divergence term of this formula, we
shall first try to express the whole right hand side of this equation in some
divergence form, i.e. we want to the left hand side of that equation with some
divergence term of @) - E(L) or something similar. Thus, we need something like
the Euler operator which is defined as follows:

2.2.1 Definition (Higher Euler operator)
For any multi-index J and « taking values form 1 to ¢, define the higher Eu-
ler operator EZ on differential functions L, such that the following condition is
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satisfied for any vg:

q

prvg(l) =) > (QEL(P (2.12)

a=1 J

where the second sum is taken over only finitely many terms due to the construc-
tion of E/.

A direct evaluation of this condition for higher Euler operator leads to the fol-
lowing explicit formula:

2.2.2 Proposition (Higher Euler operator)
The higher Euler operator, defined as above, is explicitly given through the fol-
lowing formula for all 1 < o < q and all multi-indices J:

Ej = ; (j) (_D)I\J% (2.13)

The sum is taken over all multi-indices which contain J by the meaning of defini-
tion 2.0.4, but in practice, there will be only finitely many terms to consider due
to the partial derivative applied to some differential function, which will vanish
for almost all values of I.

PROOF. To prove that the explicit formula for the higher Euler operator
satisfies the condition 2.12, we start with the common Leibniz rule

R-D;Q = D;i(QR) — QD;R

for some differential expressions () and R, which can be generalized by induction

! R-DQ=Y G) D, (@ (~D)nsF).

Thus, we can now evaluate the left hand side of equation 2.12 and get

prvg(P ZDIQaaP ZZDJ< <> D),\Jg—;>. (2.14)

a,l JCI

Interchanging the order of the two summations finally leads to the higher Euler
operator as stated in 2.13, which also shows the uniqueness of that expression
due to the direct consequence of the latter formula from 2.12. O
As we easily see, this above concept is indeed a generalization of the classical
Euler operator defined in 1.2.7. For J = 0, which denotes the empty multi-index
containing no variables, the two definitions coincide by E2 = E®. For this reason,
the higher Euler operator has also been implemented in the function Euler, and
we notice that its evaluation for given P and J can be a quite complex issue.
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At this point, we are now able to solve the first part of the problem with cal-
culating conservation laws by stating an explicit formula for the current A from
equation 1.37, which has been implemented in the JETS package as current:

2.2.3 Proposition (currents)
For a given g-tuple of differential functions ) and a differential function (La-
grangian) L, there is some p-tuple A of differential functions depending on @) and
L such that

pr vy (L) = Q- E(L) + Div(A) (2.15)

(see 1.37), where A takes the form

ZZ Z’““ Dy (QE(L)) (2.16)

a=1 |1\>0

fork =1,...,p. In this expression, iy denotes the multiplicity of the variable k in
multi-index I and I, k is the multi-index obtained by attaching variable k to that
multi-index. Further, the second sum is formally taken over all multi-indices of
arbitrary length (starting with the empty list), but this reduces to those (finitely
many) terms for which the higher Euler operator does not vanish.

PROOF. The first part of this proposition has already been proved as a part
of Noether’s theorem 1.4.2 so that here only the explicit form of A remains to be
shown. Thus, we simply try to prove it backwards by computing

Div(A Z Z Z |Zk|—:_11 5 (Q*EL*(L)) (2.17)

a=1[1|>0 k=1

and the following substitution of indices: Let J := (I, k), so we get ji = ix+1 and
|J| = |I] + 1, and since trivially |J| = >, j, the fraction in the above formula
simplifies to 1. (Note that this index shift from I to J has also been used in the
implementation of current for convenience in programming).
Thus, comparing the result of our substitution with the definition of higher Euler
operators, equation 2.12, the two expressions coincide up to the summation index
for multi-indices, i.e. the arguments Q*FE, (L) related to multi-indices with |J| =
0 differ, immediately proving 1.37. O
Using this proposition, we are now able to compute conservation laws, ac-
cording to Noether’s theorem that only involve classical variational symmetries,
while the case for divergence symmetries remains more complicated, as we shall
see in the following.
Thus, we can now make use of equation 1.39 and compute conservation laws for
given variational symmetries (with characteristics ()) and a given Lagrangian L
of a variational problem as P = —A — L{ with the above formula for the current
A. This has been implemented in the JETS package as classcons and allows to
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find explicit formulas for conservation laws of this classical forms, as it is shown
in the example worksheet [ex1]. In the following, we shall now generalize this
concept to treat also divergence and generalized Bessel-Hagen symmetries using
total homotopy operators.

2.3 Total Homotopy Operators

On our way to the total homotopy operator, it is necessary to note that all
operators acting on differential functions, like vector fields, Euler operators or
total derivatives, can be understood to act coefficient-wise on differential forms.
Thus, we transcribe some differential functions Py into a total differential r-form

w=Y_ Pjuldz’, (2.18)

where the dz’ = dz9* A...Adz’" are elements from the standard basis of A" T*X.
Thus, we can write the prolongation as

prvg(w Zper Pj)dz”, (2.19)

and the total derivative of such r-form takes the form

P
Dw= Z i(dz’ A w) de A D;w, (2.20)

i=1

where the D; act only on the coefficients of the differential forms. Hence, we see
that it is practically just another notation for the total derivative treated before:

Dw = zp: > DiPyda’ A da’. (2.21)

i=1 J

As our problem is to find some p-tuple of differential functions B for a given
Div(B), this translates in our new notation into transforming a given p-form into
a (p — 1)-form with the appropriate derivative. This means we need some kind
of interior product, i.e. an operator

|Q : /\k: _)/\k—l

for some g¢-tuple of differential forms and 1 < k < p, while the cases £k = p and
k = p — 1 will be sufficient for our present applications.
This interior product should have the following property for a given r-form w,
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which can be understood as some kind of product rule, and which will soon show
to be necessary for our purposes:

prvg(w) = Dlg(w) + lg(Dw). (2.22)

An operator with these properties can indeed be formulated, mainly making use
of higher Euler operators:

2.3.1 Theorem (Interior product)
The interior product lg of a given w € N\ for 0 < r < p, satisfying the required
property 2.22 is determined through the general formula

q D . 8
lpw)=>">">" = ;k++|11| — D (QaEg;k <w4w)) , (2.23)

a=1[1|>0 k=1

where the interior product 1 for basis elements is defined as

9 . . . . . .
i (dz”* A ... Adaik) = (=1)! 7 da? AL A da?t Ada AL A datr (2.24)

for some 5, =1, 0 otherwise.

The complete proof of this theorem for general r-forms is quite complex and
technical, but for our present needs it will be sufficient to consider the cases
r=pandr=p—1.

For r = p, the p-form will look like w = Ldx' A ... Adz™ and the coefficient L is
a differential function, e.g. a Lagrangian. Hence, equation 2.23 reduces to

P

lo(w) = 3 (~1)* ' Ayda*, (2.25)

k=1

where the coefficients Ay are exactly the components of the current computed in
2.2.3 and dz* denotes that basis element of (p — 1)-forms in which dz* is left out
foral <k<np.

Thus, we can use this result to write equation 2.22 as

prvo(w) = Dllg()) + Q- E(w), (2.26)

which is obviously the integration by part formula form Noether’s theorem, for-
mula 1.37, in homotopy form. This observation immediately yields an interpre-
tation of the current calculated above in the context of interior products and
homotopy.

In the case of r = p — 1, we have a differential form

w= (—1)’“_1Pkdxi“, (2.27)

p
k=1
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where the coefficients describe a p-tuple of differential functions. Further, the
general formula for the interior product, equation 2.23 shall now take the form

lo(w) = Y (~ 1) Ryyda®, (2.28)
j<k
where the coefficients are determined through a skew-symmetric matrix of dif-
ferential functions R and da’* is a basis element of (p — 2) forms constructed in
analogy to dz* above by leaving out the two differentials referred to.

Thus, it is now easy to see from the general formula 2.23 that the matrix entries
R, are determined by the following equation:

o= S oi (@ (ShhEpm) - B Ee))) e

a=1[I1|>0

Hence for this special case the prolongation formula 2.22 can be written as

prvo(Py) = ZD R + Ap, (2.30)

j=1

with Rj; as above and Aj as determined in 2.16. This is again an expression
fully in terms of coefficients of those differential forms, or rather of differential
expressions in terms of higher Euler operators.

For practical reasons, the implementation of this interior product lg in JETS as
interprod has been limited to these two special cases of r = p and r = p — 1,
which is sufficient for the applications we are going to consider. Furthermore, this
implementation could also concentrate on the coefficient structures and needs not
involve explicit differential forms.

As a next step, we are going to specialize equation 2.22, the products rule for the
interior product for scaling vector fields: For an evolutionary vector field

o 0
=S e

its infinite prolongation

0
J

is called the basic scaling vector field.

Further, for some smooth differential function P[u] = P(z,u™), defined on a
vertically star-shaped domain, we can conclude the following differentiation with
respect to some path parameterized by A

—P)\u ZuJ

pr vu(P)[Aul, (2.31)
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with the notational convention that the term in square brackets is substituted for
the dependent variables (and accordingly for their derivatives) for evaluation.

An integration of the latter over a path parameterized by A (which need not be
the standard path, but can also be substituted by some integration path trans-
formation to avoid singularities in the examined function) leads to the expression

Plu] - P[0] = /O %prvu(P)[/\u]d)\, (2.32)

where, as above, the notation P[0] means that all dependent variables are set zero,
hence it remains a function depending solely on the independent variables z°.
Recalling that prolongated vector fields act coefficient-wise on total differential
forms, as used above, the latter equation is immediately analogue to

1
1
wlu] — w[0] = / N vy (w)[Au]dA (2.33)
0

with w[0] = w(z,0) as above only depending on the basis space X.

Applying this specialization to the scaling group to the interior product defined
above, formula 2.22 leads, in analogy to 2.23 to the following (differing only
through the substitution @ = u):

lo(w) = Xq: 3 Xp: — :’f‘;‘ D (uaEg;k (%Jw» . (2.34)

a=1 |1/>0 k=1

Thus, using 2.22 and 2.33, we can now formulate the following homotopy formula
through integration as above:

wlu] — w[0] = DH(w) + H(D w), (2.35)

where H denotes the homotopy operator defined as

H(w) = /O %Iu(w)[)\u]d/\, (2.36)

showing directly the correspondence between 2.35 and 2.22. The terms in square
brackets denote again a substitution of Au for v in all dependent variables and
their derivatives. Analogue, w|[0] is only depending on the independent variables
x'. Thus, w[0] is still an ordinary differential form on Q. So, provided 2 is also
star-shaped, we can use the basic identity for k-forms from the de Rham-complex,

w = dh(w) + h(dw), (2.37)

with the appropriate homotopy operator given by

h(w) = /0 %(vo W)zl (2.38)
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Hence, 2.37 can be written as
w[0] — wo = dh(w[0]) + A(dw]0]), (2.39)

where wy = 0 for r > 0 and wy = f(0) for r = 0, ie. if w[0] = f(z) is a
function. As partial derivatives and total derivatives coincide for these forms
that do not depend on dependent variables, we can obviously replace the d’s in
the last equation with the total differential D.

Thus, we obtain the total homotopy formula for r-forms w with 0 < r < p as a
summation of equation 2.35 and 2.39 in the form

w — wy = DH*(w) + H*(Dw), (2.40)

where the total homotopy operator is a combination of the two homotopy opera-
tors treated before:
H* (w) = H(w) + h(w[0]) (2.41)

So, if we intend to give the explicit form of this total homotopy operator in
analogy to equation 2.36, we can even go one step further and introduce some
integration path transformation ) instead of the simple substitution in [Aul,
which makes it possible to avoid singularities, such that the given form shall be
practical usable on all star-shaped domains for an appropriate path.

Thus, consider an integration path transformation Q(\,z,u) depending on all
variables, then the case of w[0] means that all u’s are set equal zero, so that for
A =0, Q only depends on z, so we can write Q(0,z,u) =: g(z) as a function of z,
and consequently for wy—¢g = w(z, g(x)) =: f(x) as another function. Therefore,
in analogy to 2.36 the total homotopy operator with a variable integration path
can be written as

H(w) = /0 156 (3 0.0 iy (D[ QUA . WA + (o, QO 7,w))  (2.42)

for some appropriate path transformation @, taking the place of the A-substitution.
As a next step towards our practical applications, we are going to extend the total
homotopy formula 2.35 to total p forms of the type w = L{u] dz' A...Adx™, using
2.26 for the total derivatives, thus using the prolongation form form Noether’s
theorem in homotopy form. Thus, we can refer to the results obtained when
considering the case r = p for the interior product above, therefore, if the coeffi-
cient of the p-form, L[u] = L(z,u™) is defined on a totally star-shaped domain,
equation 2.26 resp. 2.15 resp. 1.37 can be written as

Lju] = Div(B*[u]) + /0 w- B(L)[M]dA, (2.43)

where B* is the sum of two p-tuples B*[u] = B|u] + b(z), according to the total
homotopy operator, while the form of the second component is obvious due to the
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integration and the components of the first one are just the currents as determined
in 2.2.3 (as a consequence of this special case for the interior product, as treated
above). Thus, the components of this current B* can be calculated explicitly as
follows for 1 < k < p:

By[u] = /ZZ(’;‘E (u*ELF (L) [Mu]) dA (2.44)

a=1 1T

and

1
b () = / N LoR LAz, 0)dA. (2.45)
0

Further, for Euler-Lagrange equations with F(L) = 0, formula 2.43 will reduce to
L = Div(B*) so that we have achieved an explicit formula to compute a divergence
form of any given null-Lagrangian.

Finally, we can now manage the case of total (p—1)-forms, leading to the solution
of our problems, following as a direct consequence in analogy to the above formula
from the case r = p — 1 for the interior product, as treated above:

2.3.2 Theorem (total homotopy operator)
For a q-tuple of differential functions P with L = Div(P), there is the general
formula

P
Py =) D;Q;+ B} (2.46)
j=1
for 1 <k <p, where B}, = By + by are given by equations 2.44 and 2.45 and the
matriz entries QF, = Qi + qjx are given as

Qjlu] = /ZZD,( (‘ZI"+1E“( k)[)\u]—|i}°|:12E£’k(13j)[Au])>dA

a=1 1T
(2.47)

and
1
g () = / N2 (27 Py(Az, 0) — 2 P;(Az, 0)) dA. (2.48)
0

As we see, equation 2.47 resembles 2.29 from the case r = p — 1 of the interior
product, and all integrations can be performed with an integration path trans-
formation Q(\, z,u) as presented in 2.42.

An important application of this total homotopy operator or, more precisely,
the reason why we have treated it at this place, is the property that it allows
us to write a null-Lagrangian as a divergence, yielding some ”anti-divergence”
of a given p-form, and to write null divergences as total curls of some matrix
operator given by Q7,. The total curl was defined as Py = E:D]-Q;“-,c for some
skew-symmetric matrix operator ().

This general homotopy operator for p and (p — 1)-forms has been implemented
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in the JETS package as homotopy. As the equations above already show, the
computations may get really complex and lengthy even for small examples, but
it shows an algorithmic way, which is, through the help of computers, also prac-
tically usable, to compute an anti-divergence or anti-curl for a given expression.
This implementation also covers the case of non-standard integration paths, as
mentioned above, which may be determined algorithmically or assigned by hand.
Finally, our main application of this homotopy operator shall now be obvious:
With the help of the anti-divergence we are now able to compute the explicit
conservation laws of a given variational problem. In Noether’s theorem, we had
the conservation law P expressed by

Q- B(L) = Div(P) (2.49)

for given characteristics of variational (or divergence or generalized variational)
symmetries () and a given Lagrangian L. Thus, the conservation law can be
computed in this general case by applying the total homotopy operator to @ -
E(L). This has been implemented in the JETS function conservation which
returns a conservation law for given () and L.

2.4 Simplifying Conservation Laws

As we have seen before, the conservation laws of a given variational problem
are only determined up trivial conservation laws and expressions with vanishing
divergences. Nevertheless, especially if concentrating on special components of
the conservation laws, e.g. the conserved density, it is very practical and almost
crucial for useful results to have a ways to simplify the calculated expressions as
far as possible, i.e. cancelling out terms where possible and shorten the resulting
terms.

Although there is no normal form for such expressions and no general algorithm
for an optimal simplification, there are some useful tactics that have a good chance
to simplify differential expressions and transform a good share of examples into
the expected form which is understandable to the user.

One way to do this, which is frequently used in the considered examples and
has a high potential in simplifying results, is balancing out jet coordinates in
products by shifting over indices, using the following proposition, which performs
an integration by part to reduce jet expressions with respect to their order:

2.4.1 Proposition (balancing of conserved densities)
differential jet expressions remain invariant up to trivial divergence terms under
the following transformation

uruy f(z, u(”)) > uI\K(—1)|K|DK(qu(x, u(")), (2.50)

where the multiindex K is a sublist of J, i.e. K C J and f is an arbitrary, smooth
function depending on jet variables.
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This proposition follows immediately from the product rule for integration by
parts and is used to simplify products of jet coordinates by shifting over deriva-
tives.

2.4.2 Example
Under the transformation of the above proposition, we get the following trans-
formation

Ullgy F —Ugly

and the conserved density of energy

1 1 1,
Euum + §uuyy — §ut

would take the form known from the physics books:
Loy 2 2

(cf. example [ex2]).

In the following algorithm that has been implemented as intpart in the JETS
package, such transformations are applied whenever the multi-indices denoting
jet derivatives can be balanced in a product:

2.4.1 Algorithm: intpart

input:differential expression, protected variables
output: simplified differential expression, transformation algorithm:

1. Write the differential expression in expanded form.

2. Scan the expression for summands in which the jet order of one factor (a
jet coordinate) is at leat by two higher than the jet order of the remaining
factor, not counting the protected variables from above.

3. If a summand is found in step 2, apply formula 2.50 and replace it with the
result.

4. Continue scanning and substituting until then end of the expression.

5. Put the whole expression into expanded form, if necessary, and repeat steps
2..5 until no further changes can be made.

Looking at the above scheme, one has to make clear that the algorithm really
does terminate after finitely many steps, which is due to the fact that shifting
over of derivatives is performed, only if the according jet variables have orders
that differ by at least two, while the index is shifted from the higher to the
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lower order. With this restriction, we make sure that the order of a jet variable
can never be increased to more than the highest order in that summand, and
secondly, there can be no mutual exchange of variables. Thus, the algorithm will
terminate as soon as all appropriate jet variables are balanced up to differences
of one or protected variables. In practice, this procedure will often also make
use of cancelling out terms during the intermediate simplifications such that the
expression is usually only scanned very few times.

Nevertheless we have to point out that the result of this algorithm is no unique
normal form and that not all possible simplifications and cancellations of terms
can be found in this way, but intpart has shown to be a very useful tool when
dealing with conserved densities.

Another way to normalize conservation laws or conserved densities is reducing
them by trivial conservation laws of the type P = P’ + P where Div(15) =0,
which is done by an algorithm which has been implemented as divnorm in the
JETS package, by removing such trivial divergence terms and reducing it up to
divergences. This is done by scanning a differential expression for terms with
vanishing divergence and removing them from the sum to reduce it as far as
possible, while those expressions are stored in a different list to keep control on
the applied changes. As above, this algorithm will simplify a given expression in
most cases, sometimes even drastically, but it does not return a normal form in
strict definition.

2.5 Applications to Conservation Laws

With the help of the above homotopy operators, we are now able to compute
conservation laws explicitly by using the formulas 1.39 and 1.41. This means,
for a given variational problem and given symmetries we are able to render a
complete set of conservation laws stemming form those symmetries according to
Noether’s theorem.

For variational symmetries (i.e. using only classcons which is more stable for
general terms with several arbitrary parameters, this has been done on the ex-
ample form elastostatics, referring to the deformation of an elastic body, which
can be found in example [ex1]. In that case, the strategy has been to impose
special symmetries motivated through physical modelations, e.g. homogenity or
isotropy of the considered body, formulate an appropriate Lagrangian to preserve
these properties and compute the conservation laws stemming from these assump-
tions. These calculations are done on general equations for a given number of
coordinates (here: two-dimensional) which yield interesting results like Eshelby’s
celebrated energy-momentum tensor or Euler equations in divergence form. For
further details, see [ex1].

A second example, which also includes dealing with divergence symmetries, is
the analysis of the three-dimensional wave equation, which has mainly been cho-
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sen because its (first order) conservation laws are already explicitly known from
physics and have been completely listed in literature (cf. [Olv] p. 285 and [Ibr]
p.97). In this case, we use a different approach from above, as we impose the
variational problem (i.e. the Lagrangian) and then compute the symmetries of
the Euler-Lagrange equation with the help of a PDE solver from [VuCal, which
produces a complete list of symmetries in vector field notation. Thus, can now fil-
ter out the variational and divergence symmetries, which are seven and three for
the three-dimensional wave equation, and finally compute the according conser-
vation laws with the function conservation. Finally, this leads to the following
result for the wave equation (see MAPLE worksheet [ex2]), only writing out the
conserved densities, as those are of main physical interest:

Characteristic : ConservedDensity :
translations : Uy P, = uzu,
Uy P, = uyu
Up E = 3(u,® + uy® + u,?)
rotations: Ty — YUy A=2zP,—yP;,
TU + tuy M, =xFE + tP,
Yug + tuy M, =yE + 1P,
dilatation: LUy + YUy + tug + Ju D =zP, +yP,+
+iuuy + tE
inversions: (22 — y? + t*)ug+ I, =2D + yA+
+2zyu, + 2xtus + TU sTuuy + tM,
2zyu, + (y* — 2% + t2)uy+ I, =yD — zA+
+2ytus + yu —I—%yuut +tM,

2xtu, + 2ytu, + (22 + y? + t*)u, + tu I = (* +y*)E—
su’+2tD — °F
(2.51)

In this table, the first two conservation laws can easily be recognized as con-
served momentum, and the third is obviously the expression of conserved energy.
The fourth conserved density belongs to the angular momentum, while the phys-
ical interpretation of the remaining expressions is not so obvious.

In the same way, we also have computed all 15 conservation laws of the four-
dimensional wave equation in the above manner, which can be found in example
[ex4]. as above, these conservation laws (resp. their conserved densities) can be
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expressed as (with spatial variables z,y, z and time-coordinate t)

Characteristic : ConservedDensity :
Up E = 3 (ug® 4 uy® 4 u,” + u?)
U; P, = wu; ie{x,y, z}
Uyl + u;t M; =tP, + E1i ie{x,y, z}
—u;J + u;t Ay = —ujwj + ujugi (1,7,k) = o(x,y, 2)
= iP, — jP,
U+ Ust + U T + UyZ + U2 D =aP, +yP,+ 2P+
+tE + uuy
sup (P + 22+ y? 4+ 2%) + I, = 2tD+

Fut + ugte + uyty +u itz + (22 +y P+ 22 — 3 E — u?
i (-2 + 2+ k*—1?) L =2D— (2 +y*+22— ) P,
—ut — wtt — ujij — ugik =iD + jA, — kA;+ (i,7,k) = o(x,y, 2)
+tM; + 1uuy
(2.52)

In this table, i, j, k are used for cyclic permutations of the spatial variables
x,y, z such that several lines yield three conserved densities at once. As before,
we recognize conservation of energy, linear and angular momentum in the first
lines.
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Chapter 3

Higher Order Symmetries

In this chapter, we are going to apply our earlier transformations to generalized
symmetries, i.e. after introducing the notation of higher order symmetries and
differential operators, we are going to look at the corresponding conservation laws
and finally give some kind of classification of these symmetries for wave equa-
tions, which shall be compared to theoretical predictions.

3.1 Recursion Operators

As an approach to higher order symmetries, i.e. such symmetries that also depend
on jet coordinates of order larger than 1, we shall start by generalizing the vector
field notion from an earlier chapter:

3.1.1 Definition (generalized vector field)

A generalized vector field ' v is a vector field which may depend on higher jet
variables, in the following form, with smooth functions £ and ¢* depending on
all jet coordinates

0 ar 1 O
oxt at ou®’

v = ¢y (3.1)

So, as an example, the expression

0
V = TUp—— + Ugy—
"oz T "oy
is a generalized vector field in one dependent and one independent variable, but
obviously, it is not vector field in the classical sense of definition 1.17.
The prolongation of such a generalized vector field can be defined exactly as in
the classical case, i.e. the general prolongation formula 1.18 can be applied as

'In the following we shall always consider generalized vector fields, so the term ” generalized”
may be omitted.

49
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well, and so the characteristic of such vector field is defined as in 1.3.6. In analogy
to the characteristic form of a classical vector field, we are now able to make the
following definition:

3.1.2 Definition (evolutionary vector field)
For any g¢-tuple Q@ = (Q*, ..., Q) of differential functions, the generalized vector
field defined by

q
0
Vg = ¢ — 3.2
Q ZQ aua ( )
a=1
is called an evolutionary vector field, whereas () is named its characteristic.

Obviously, the prolongation of such a vector field takes the simple form
0
pPrvg = ZDJQQ%, (3.3)
a,J

and we further see that each generalized vector field defined as in 3.1 has an
evolutionary representative v to a characteristic ) with

p
Q¥ =¢" - &g, (3.4)
=1

for any 1 < a < ¢g. So, if we compare these two vector fields, we shall see that
they determine the same symmetries on the basis of the following definition:

3.1.3 Definition (generalized infinitesimal symmetry)

A generalized vector field v is called generalized infinitesimal symmetry of a sys-
tem of differential equations Anu(x,u(”)) = 0 for any 1 < v < n, if and only if,
for any smooth function u = f(z), it is prv[|delta,] = 0 for all v.

Note that we also have to impose some nondegeneracy conditions both on the
system A itself as well as on its prolongations, which we shall assume implicitly.
On the basis of these two definitions, we can state the following:

3.1.4 Proposition
A generalized vector field v is a symmetry of a system of differential equations,
if and only if its evolutionary representative is.

Proor. In analogy to the characteristic version of the prolongation formula,
equation 1.24, we can write the criterion for generalized infinitesimal symmetries
as

p
prv[A,] = prvgl[A,] + Z ED;A,, (3.5)
i=1
where the first term on the right hand side vanishes on all solutions of the system
A, and so the rest follows directly from definition 3.1.3.
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As a next step, we are now going to get from characteristics of a vector field to
differential operators to describe the symmetries of a given variational problem,
which will make it possible to construct such generalized vector fields that make
sense as symmetries.

3.1.5 Definition (Recursion operator)

For a system of differential equations A, a linear differential operator R : A? — A4
on the space of g-tuples of differential functions id called a recursion operator for
A, if for each evolutionary symmetry vq of A follows that v is an evolution

symmetry of A as well, where Q = RQ is the application of the differential
operator to the characteristic Q).

It is obvious that this definition can now be used to produce further symmetries
of A from any known symmetries v by applying the operator R recursively,
leading to an infinite family of symmetries (though we will later see that these
need not be "new” symmetries). So this makes clear where the name recursion
operator stems from. Furthermore, we are now able to come up with a one-to-one
correspondence between characteristics of generalized symmetries and recursion
operators in the following way:

3.1.6 Proposition (recursion operators and characteristics)

Let R : A? — A? be a differential operator not depending on the dependent
variables u® or their derivatives and Alu] = 0 a linear system of differential
equations. Then R is a recursion operator for A (understood as differential
operator), if and only if Q = R[u| is the characteristic of a ”linear” generalized
symmetry of A, where R[u] is the application of the differential operator to the
g-tuple of dependent variables, yielding a characteristic as a g-tuple of differential
expressions.

PROOF. To prove this identity, let us first assume that R is a recursion op-
erator. It follows immediately that Q = R[u] is a symmetry since @y = u is the
characteristic of the trivial scaling group (z,u) — (z, Au) coming form the im-
posed linearity of the system. On the other hand, if v is a symmetry, it follows
from the prolongation criterion 3.1.3 and the linearity of A that

prv,(Afu]) = AlQ] = AR[u]

holds on all solutions. Therefore there exists a differential operator R with
AR[u] = RAu] for all u due to the nondegeneracy of A. As A and R are
independent of u, it is obvious that we can also choose R to be independent of
u and hence we get the identity of differential operators AR = RA. Thus, for
Q = RQ and Q the characteristic of a symmetry, it is A[Q] = 0 and consequently
A[Q] = RA[Q] = 0 is true for all symmetries, and so Q defines another symmetry.

O
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To make this correspondence of recursion operators and characteristics ac-
cessible for practical use, we need an algorithmic way to find the corresponding
recursion operator to a given characteristic. In many (linear) examples, it might
look evident and intuitively clear how to transcribe characteristics of given sym-
metries into the according recursion operators for that @@ = R[u] is satisfied.
Therefore, one will easily see that the differential operator according to the char-
acteristic for a dilatation, u,, can only be D,, and hence, a rotation like zu, —yu,
can be rewritten as D, — yD,. Though this may be quite easy for manual com-
putations, we need a more formal way for implementations on the computer.

3.2 Fréchet Derivatives

To make generalized symmetries accessible in the form or recursion operators,
we need an algorithmic way to formally rewrite the characteristic of a given
symmetry as a differential operator. This can be done with the (formal) Fréchet
derivative of differential functions:

3.2.1 Definition (Fréchet derivative)
For an r-tuple of differential functions P[u] = P(x,u(™) € A", the Fréchet deriva-
tive of P is defined as the differential operator Dp : A? — A" with the property

o(@) = | Plu+iu] (3:6)

for any g¢-tuple of differential functions A9, where the expression Plu + £Q]ul]
means that all dependent variables u® and their jet derivatives are replaced by
u® + Q" and their corresponding derivatives. (Note the similarity of this defini-
tion with the variational derivative given in equation 1.7).

How this application of the Fréchet operator to a differential function is computed,
shows the following example:

3.2.2 Example
Thus, in contrast to the above (linear) example of a rotation, let us now consider
Plu] = uzug,. According to the above definition, this leads to

Dr(@) = | (s +2DuQ) (0 +eD2Q) = 1eDIQ + 2 D,
=0

Thus, the corresponding differential operator is Dp = uwDﬁ + UpeDy.

In comparison with the linear example above, we can see that this result
is less obvious at first sight, due to the fact that taking of total derivatives
produces inner derivatives as a consequence of the chain rule. Hence, we can
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give a general formula for the Fréchet operator on the basis of the chain rule in
several dimensions. The general Fréchet derivative of a r-tuple P is given by the
differential matrix operator with entries

(Dp)w =Y @DJ, (3.7)

with 1 < pu <7 and 1 < v < ¢, where the sum is taken over all multi-indices J.
Note that the sum consists of only finitely many non-vanishing terms due to the
partial derivative (cf. note to the Euler operator 1.2.7).

Thus, according to our simple linear example above, we can now conclude that
for linear differential polynomial expressions P = Alu|, we get the convenient
identity Dp = A. This notion requires that the strict form of A is preserved
throughout the operation, although the system of differential equations stayed
invariant under possible changes, like e.g. permutation of equations.

If we compare the above general formula 3.7 with the prolongation of an evolution-
ary vector field as given in 3.3, we immediately get to the following proposition:

3.2.3 Proposition
For a tuple of differential functions P € A" and () € A9, it is

Dp(Q) = prvo(P). (3-8)

This proposition offers a useful way to compute prolongations of (generalized)
vector fields, especially in those cases where the prolongation of several different
vector fields applied to the same differential function (e.g. a Lagrangian) has to
be calculated, where the same differential operator (the Fréchet derivative) can
be applied to all relevant characteristics. This has been done in the implementa-
tion of the symmetry check symsplit, see 1.4.3.

3.3 Variational symmetries and conservation laws

On our way to use the generalized symmetries constructed above with the help of
recursion operators to obtain further conservation laws, we have to generalized the
concept of variational symmetries, which were linked to conservation laws through
Noether’s theorem. To generalize this theorem for higher order symmetries, we
make the following definition:

3.3.1 Definition (variational generalized symmetries)
A generalized vector field v as defined in 3.1 given by

. 0 0
v =l + ¢l
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is called a variational symmetry of the functional Lu] = [ L(c,u™) if and only
if there is a p-tuple of differential function B € AP such that the criterion

prv(L) + LDiv(¢) = Div(B) (3.9)
is satisfied for all variables x, u.

As we see, this latter criterion resembles the infinitesimal criterion of invariance
for point symmetries, just with the difference that, for generalized symmetries,
the divergence symmetries are included in the term wariational, because the dis-
tinction between those types, as in the classical case, would not make any sense
here. So, strictly speaking, the variational generalized symmetries are a general-
ization of the Bessel-Hagen symmetries (divergence symmetries).

As a next step, we have to show that it is sufficient to consider evolutionary
symmetries, when searching a complete set of variational symmetries of a given
problem. This restriction of symmetries is crucial in so far as we are constructing
generalized symmetries through recursion operators, which always leads to evo-
lutionary symmetries. Thus, we have to make sure that no relevant information
is lost through this restriction.

3.3.2 Proposition
A generalized symmetry v is a variational symmetry of a given functional Lu),
if and only if its associated evolutionary vector field v¢ is variational.

PROOF. If we substitute the prolongation formula as given in 3.5 into the
invariance criterion 3.9, we get

P p
prv(L) + LDiv(§) = prvg(L) + ) &D;L+ L) Die,
which can be simplified through the product rule to
=prvg(L) + ZD (§'L) = prvg(L) + Div(L§). (3.10)

Comparing the latter to the right hand side of equation 3.9, we conclude
prvg(L) = Div(B) (3.11)

for B= B — L. O

This proof shows immediately that a restriction to Div(B) = 0, according to
variational point symmetries, would make the above proposition fail, so that it
was indeed necessary to define variational symmetries as above in this wider way.
In analogy to the case of point symmetries, we now can also conclude that any
variational symmetry of a given variational problem is also a variational symmetry
of the according Euler-Lagrange equations F(L) = 0. Hence, this leads us to a
generalized version of Noether’s theorem (see 1.4.2):
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3.3.3 Theorem (Noether’s Theorem)

A generalized vector field v, defined as in 3.1.83 with characteristic Q is a vari-
ational symmetry of a given variational problem L[u] with corresponding Euler-
Lagrange equations E(L) = 0, if and only if Q is also the characteristic of a
conservation law P for E(L) =0, i.e if the equation

Div(P) = Q- E(L) (3.12)

s satisfied. This means that there is a one-to-one correspondence between the
equivalence classes of (nontrivial) conservation laws of the Euler-Lagrange equa-
tions and the equivalence classes of vartational symmetries for the variational
problem.

3.3.4 Remark

Thus we see that not only the conservation laws are only determined up to ad-
ditional trivial conservation laws which vanish on all solutions, as already found
in the classical case, but the same is true for variational symmetries. This means
that two variational symmetries are obviously equivalent if their characteristics
are the same for all solutions of the Euler-Lagrange equations and they may dif-
fer by a symmetry whose characteristic vanishes on all solutions. Such symmetry
would be called a trivial symmetry.

As we have a version of Noether’s theorem for generalized symmetries, we are
now able to apply it to practical examples, leading to conservation laws stemming
from higher order symmetries.

3.4 Further conservation laws of the wave equa-
tion

Returning to our example of the wave equation with two spatial coordinates and
one time-coordinate, from the last chapter, we are now able to compute further
conservation laws than the ten mentioned in the last chapter. To achieve this,
we first have to construct higher order symmetries with the techniques described
at the beginning of this chapter, using recursion operators.

Before explicitly computing these generalized symmetries, we need the following
definition:

3.4.1 Definition (order of symmetries)
The order of a generalized symmetry is defined as the order of the highest jet
coordinate occurring in its characteristic.

With this definition, it is clear that classical point symmetries always have or-
der one and that the order of a generalized symmetry generated as a successive
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product of symmetry operators has at most an order that is equal to the sum
of the orders corresponding to the generators. We shall later see that the order
has not to be the exact sum of orders, due to relations between such differential
operators.

Thus, before applying successive products of these recursion operators, we first
have to transform the characteristics of variational (and divergence) symmetries
calculated before into differential operators, which can be done either with Fréchet
derivatives as described above or simply with the remark for linear expressions.
So we get the following ten recursion operators:

D,, D,, D, (translations)

Rey =Dy — yDy, Ryy = tDy + Dy, Ryy = tDy + yD, (rotations)
D=1Dy+yDy+tD; + % (dilatation) (3.13)
Jp = (2* — y* + t*) Dy + 22y D, + 22tD; + x '

3y =2zyD, + (y* — 2+ t*)D, + 2ytD; + y (inversions)

3y = 22tD, + 2ytDy, + (z* + y*> + t*) D, + t

On the basis of this table, we can state the following remark resp. definition that
we will need later on:

3.4.2 Remark (Poincaré group and conformal group)

The symmetry generators of the wave equation stemming from translations and
rotations (in our above table the first six operators) generate a Lie group which
is called the Poincaré group.

The group generated by all variational® symmetries, is called the (full) conformal
group of the given Euler-Lagrange equations.

As we have seen before, successive products of these operators lead to generalized
symmetries of the same variational problem, for example the combination of two
rotations leads to the following characteristic of a second order symmetry:

RayRat(u) = —yur — yruy — Ytug, + xQuty + Tty

With this knowledge, we could principally now compute a complete set of con-
servation laws for any given order, but before facing this problem, we will first
obtain those examples for such conservation laws given by Olver [Olv] on page
334 and compare it with our results. We have to point out at this place that,
unlike the results form Olver, our conservation laws have been computed in a
strict algorithmic way that does not require any physical intuition or theoretic
reasoning related to that specific example. Thus, with the calculations shown in

%i.e. generalized variational symmetries (Bessel-Hagen symmetries) of first order, including
divergence symmetries
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the MAPLE worksheet [ex2], we get the following table:

Recursion operator Characteristic Conserved density
D ;35 Uz UgzUtt
D2D;, Uzt 5 (u2, +ul, +ul,)
Dy Uttt %(“?t +ugy + u?;t)
DmRzyDz —YUzrs + xuzz‘y + ua:y uzt(xuzy - yua:a:)
DyRoyDy — 5D2 = 5D2 —YUpay + Ty — 5lae + 5Uyy  —Uga(Yliye + 5s)
Fyy (Tug + %ut)
DzjzztDw TUggt + tummm + Ugt %x(u?gt + uiz + u?yy)
FlUpp Uy
D,DD, LUgas + Yloay + oot + SUge  5H(UD, + ud, + ul,)
+xu$$u$t + yuzzuyt
+%uwwut
(3.14)

A few slight differences of the table given here and the results printed in [Olvy]
stem from a couple of mistypings in the literature which we could find and correct
with the algorithm of a direct computation of conservation laws. As before, we
have only compared the conserved densities, which are of greater physical interest
in many cases. For the full results, see the corresponding MAPLE worksheet.

In analogy to the case of first order symmetries, these are only unique up to trivial
conservation laws so that the calculated results were simplified and in a certain
way partially normalized with the JETS algorithms intpart and divnorm. But,
according to remark 3.3.4, these conservation laws are also only determined up
to conservation laws to trivial symmetries, and so the results may be reduced by
terms which vanish for all solutions of the wave equation, i.e. the Euler-Lagrange
equations themselves may be substituted into the conserved densities to identify
equivalent results.

So we are now able to compute, in principal, infinitely many conservation laws
for a given variational problem, e.g. the wave equation. In practice, this is only
limited by computational power due to the complex calculations involved in com-
puting the homotopy operators. In fact, this is often still less time-consuming
than finding the relevant variational symmetries up to a given order. Thus, the
complete set of conservation laws for the three-dimensional wave equation has
been calculated in the MAPLE worksheet [ex3] up to the order three, leading to
94 conservation laws, which include then ten well-known of first order and 84 new
ones of third order.

A similar calculation was done for the 4-dimensional wave equation (three spatial
coordinates and one time-coordinate), but due to practical limitations of com-
puter memory, the explicit calculation of third order conservation laws has been
limited to those stemming from the Poincaré group, yielding in total 175 conser-
vation laws, while the full conformal group had to be postponed. These latter
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results can be found in the example worksheet [ex4].
As a next step, we shall now see how to find the complete set of variational
symmetries of a given order.

3.5 Filtering generalized symmetries

As in the classical case of point symmetries treated in 1.4.1 we will again start
with the whole space that is generated by all symmetries and filter out those
which are variational. As we have seen before, all variational symmetries have
also variational evolutionary representatives v, which can be generated as a suc-
cessive product of recursion operators.

Therefore, a list of all generalized evolutionary symmetries up to a given order
can be obtained by taking the recursion operators corresponding from the first
order variational symmetries (through a Fréchet derivative) and determining all
successive products of those operators up to the given order, including the iden-
tity operator as product of order zero.

But in this vast list of generalized symmetries, it is obvious that we have not pro-
duced a system of independent symmetries, because there may be relations and
identities between those operators. For example, in the three-dimensional wave
equation, the following linear combination of second order symmetries is identical
to zero, which can also be understood through the geometric representation of
the symmetries involved:

:nyDt — :thDy + :RytDz =0

For convenience, such identities are not checked by calculating with the differen-
tial operators, but on the basis of characteristics, because it is obvious that such
non-trivial zero-operators like the example above will also have the characteristic
0 and that the other direction is also true.

Thus, we will first have to reduce our system of symmetry operators to a maximal
linear independent subsystem, i.e. a basis of the vector space spanned by these
operators. Another type of relations can occur through trivial symmetries, where
the corresponding differential operator is not identical to zero, but nevertheless
vanishes on all solutions of the Euler-Lagrange equations. Therefore, the sym-
metries also have to be reduced up to equivalence with the equation itself.
Before going into the algorithm itself, first a little definition:

3.5.1 Definition (Relations)

A linear combination of recursion operators that is equivalent to the zero operator
(i.e. leads to a characteristic identical to zero), i.e. that vanishes for all values, is
called an absolute relation, while a linear combination of recursion operators that
vanishes only on solutions of the Euler-Lagrange equations is called a relation
modulo reduction or relation on solutions.
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So this leads to the following algorithm to filter generalized symmetries which
has been implemented in the JETS package as symtestgen:

3.5.1 Algorithm: (symtestgen)

input:Euler-Lagrange equations as differential operators, a list of recursion op-
erators output: A list with the following entries:

1. absolute relations

2. (further) relations on solutions

3. variational symmetries

4. variational symmetries with reduction expressed in old basis, if possible

5. remaining (i.e. non-variational) symmetries

6. remaining symmetries with reduction expressed in old basis, if possible

7. characteristics of variational symmetries (for test reasons)

algorithm

1. determine a list of characteristics corresponding to the recursion operators
from the input.

2. Filter trivial relations from the symmetry list (i.e. those with characteristic
0).

3. Find all absolute relations between the operators (by solving a system of
linear equation in the characteristics from step 1 with a Gaussian elimina-
tion).

4. Write these relations as linear combination of recursion operators from the
input and remove them from the list of characteristics.

5. Reduce the remaining symmetries up to equivalence on solutions of the
Euler-Lagrange equations.

6. Where possible, express the reduced operators in the original basis.

7. Find all further relations (after reduction) in the remaining symmetries (in
analogy to step 2).

8. Write those new relations as linear combination of the differential operators

and remove their characteristics from the list.
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9. Find all variational symmetries by applying the Euler operator to the char-
acteristics.

10. Search for relations between the variational symmetries and return a list of
independent variational symmetries, both in the original basis and in the
new basis after substitution.

11. Return the remaining independent symmetries in both bases.

To make the above scheme a bit more understandable, we have to explain
some of the steps:
In general, the algorithm always refers to the symmetries in a parallel way by
their recursion operators given in the input and in their characteristics, some-
times also with a different notion of their operators. The operator notation is
used for the output to give, for instance, a relation between symmetries as linear
combination of operators (a characteristic simplified to 0 would not give the user
much information about the specific relation). On the other hand, the character-
istics are crucial for the actual calculations, as they are much easier to handle and
to simplify expressions, which would be a much higher effort in operator notion.
In the input, also the Euler-Lagrange equations are required in operator notation
in expanded and simplified form, which is necessary to perform the reduction
up to trivial symmetries. This operator equation can be obtained by simply
determining the Fréchet derivatives of both hand sides from the original Euler-
Lagrange equations and eliminating it to one non-trivial variable, i.e. for instance,
the 3-dimensional wave equation would be written as D} = D2 + D..
The fact that some results occur twice in the output has mainly been imple-
mented for test reasons, though are several cases where the basis change after
the reduction of trivial symmetries shows its results here. The characteristics of
variational symmetries, returned as last argument, can be used to test the given
operators, though no deviation has been noticed there so far.
The reduction modulo trivial symmetries means that, to eliminate such symme-
tries which are equivalent on all solutions of the Euler-Lagrange equations (but
not elsewhere), the equations, which can be seen as operator relations themselves,
are substituted in all recursion operators, where appliable. Thus, treating the act
of substitution as a linear differential operator (which is obviously allowed to do),
we get a list of changed operators, where many summands will remain unchanged.
Now it is theoretically not clear if each of these substituted recursion operators
(or, more precisely, linear combination of substituted operators, which have been
shown to be linear independent before) can be expressed as a (different) linear
combination of the original basis operators, i.e. if the operation of substitut-
ing the Euler-Lagrange equations is closed on the subspace generated by those
symmetry operators. This rewriting of linear combinations is done by a Gauss
algorithm on the corresponding characteristics. In practical examples, we could
see that there are examples where the reduction leads to a linear combination of
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those operators (e.g. all trivial and semi-trivial cases), but also those where no
representation in the original basis could be found. In those cases, we have used
the notation of an operator R to indicate that a reduction/substitution has taken
place.

Three times during the course of the algorithm, the list of symmetries is scanned
for relations, i.e. linear combinations between the given operators, which is done
in the following way (in analogy to algorithm 1.4.1): To find linear dependencies,
the list of characteristics (resp. the Euler operator applied to those dependencies
in case of variational symmetries) in expanded form is considered as system of
linear equations. So these characteristics generate a vector space whose kernel
parametrizes the occurring relations and a basis of this vector space yields a
complete system of independent symmetries. Thus, the characteristics are first
rewritten as a coefficient matrix of that homogeneous system, each element of
the list forming one row. So the differential expressions are written as coordi-
nate rows where the relevant jet coordinates or products thereof form a basis.
To avoid a matrix that is larger than necessary, this basis of jet coordinates is
generated dynamically, i.e. the characteristics are scanned one by one and the
new jet variables are added dynamically to the present basis. This also means
that the coordinate rows transcribed before might have to be adapted by adding
zero columns. Thus, the coefficient matrix grows both in columns and rows while
being determined, and through this algorithm, it get roughly somewhat like a
lower triangular shape, which can, in combination with the fact that the matrix
is also sparse, be an advantage in the following Gaussian elimination. So this
matrix has as many rows as there have been recursion operators in the lists to
be checked and an undetermined, possibly larger or smaller, number of columns.
To obtain a record on the basis transformation and the linear combinations used,
the following gauss algorithm is simultaneously performed on an identity matrix
(I,) with as many rows and columns as the coefficient matrix (C'M) has rows.
Thus we start with a matrix of the following shape:

cM I, (3.15)

As a next step, the matrix is processed with the Gauss algorithm, which is stopped
after the last column belonging to the original coefficient matrix, if necessary.
This makes sure the linear combinations given in the basis transformation matrix
(right hand side of the joint matrix) are changed as little as possible. Thus, we
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have achieved a matrix of the following shape:

( )

A B

0 ... 0 (3.16)
C

\0 ... 0 )
This matrix consists of submatrices with the following functions: The upper tri-
angular matrix A gives a basis of the (linear) independent characteristics resp.
symmetry operators, with the basis transformation being given in the matrix B.
Matrix A will furthermore only be used to determine its rank (which is a very
easy calculation for a fully gauss-reduced upper triangular matrix), which yields
the number of independent symmetries. The rows of matrix B could now be used
to write down a basis for these symmetries, but we have chosen to take a basis
which preserves as many of the original symmetry operators as possible. Thus we
can, by using Steinitz’ basis change theorem, choose such elements form the orig-
inal list which also contribute to the basis, which is technically done by removing
the others, which are indicated in the matrix B as zero columns. So this basis
length not only corresponds to the (column) rank of the basis transformation
matrix, but also to the zero columns themselves due to the construction of this
matrix. Hence, we get a basis of the independent symmetries by removing those
operators form the original list which corresponding to zero columns in matrix
B.

To write down the relations in explicit form, we need a parameterization of the
Kernel of matrix A, which is given in submatrix C'. Thus, by applying its rows to
the original generating system of the vector space, we are able to give a list of the
relations in terms of the original symmetry operators. Obviously, these relations
are only unique up to linear (and principally also algebraic) combinations.

So this step of the algorithm, which is performed three times with a different sys-
tem of operators (which decreases dramatically from step to step), separates the
list of given operators into two lists, one consisting linear independent operators
and one relations between those differential operators. Note that in practical
examples, the matrices can become extremely large (in our case up to about
1600 rows and maybe even much more columuns, including the identity matrix),
which makes the Gaussian elimination over the integers to a serious problem for
MAPLE, both in time as also in memory consumption terms, as the matrix entries
can become quite unpleasant, even if the original coefficients were small integers.
For finding the variational symmetries, we use the following remark:

3.5.2 Remark (variational symmetries)
According to the definition of a variational generalized symmetry, 3.3.1, the fol-
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lowing criterion has to be satisfied:
prv(L) + LDiv(¢) = Div(B)

This can be rewritten using equation 3.10 and leads to an equivalent criterion
based on equation 3.11, taking into account the remark form an earlier chapter
that a divergence term can be identified by its vanishing Euler-expression:

E(prvg(L)) =0 (3.17)
This latter can be rewritten as
E(DL(Q)) =0,
using equation 3.8, which is finally rewritten in characteristic form and leads to
E(Q-E(L)+Div(A)) =E(Q-E(L)) =0, (3.18)
the final criterion which is actually checked for the given symmetries.

The advantage of the criterion formulated in this remark is the fact that we don’t
have to compute the prolongation for each single vector field, but we need the
Euler-Lagrange equations, which are already known form the beginning, so that
the computational effort reduces to one inner product and taking the Euler op-
erator of one expression for each symmetry operator. So this is a much more
efficient way than to determine the actual prolongation.

3.5.3 Remark (present limitations)

Though the algorithm formulated above works for arbitrary numbers of variables,
the implementation as symtestgen has been limited to only one dependent vari-
able (for the present), which is sufficient for many examples, while several depen-
dent variables would increase the size of the matrices used in the Gauss algorithm
dramatically, which might exceed the facilities of MAPLE’s gauss algorithm even
for smaller examples.

So, the above algorithm allows us to split a list of given symmetry operators
up into relations and independent operators, also delivering a complete system
of variational symmetries, which makes it possible to compute all conservation
laws stemming form higher order symmetries. Hence, we have to point out that
a usable result depends on a correct input for the list of differential operators
to consider. It is obvious that all symmetries of the considered group up to a
certain order have to be specified, as otherwise relations of mixed order could not
be determined, leading to a wrong result in independent symmetries.
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3.6 Counting symmetries of the wave equation

Besides explicitly computing conservation laws of first and higher order, the al-
gorithm shown above can also be used to check theoretical predictions on the
number of symmetries:

Considering the wave equation (in three and in four dimensions), it can be in-
teresting to find out how many independent symmetries of a given order n exist,
which include both variational and non-variational symmetries. Thus, before
looking at the experimental results obtained with the above algorithm and using
the JETS package, we shall first see what is predicted by theory: For the Poincaré
group (i.e. we only consider those symmetries stemming from translations and
rotations, but not dilatations and inversions), the number of independent sym-
metries can be estimated through combinatoric reasoning and calculations, as
shown in [Nik]. If we consider the solutions of the wave equation of order m
as polynomials of order j in the symmetry operators, we get a system of linear
homogeneous algebraic equations where the number of equations of order k is

given by
j+m\[(k+m—1
NE = 3.19
“ (j + 1) < k ) (319
and the number of unknowns in these equations are
+m—1\/m+k
NE = (7 . 3.20
v < j ) ( k+1 ) (320

To determine the number of independent solutions, we now need the number of
arbitrary parameters, which can be calculated with the following formula through
elementary combinatorics, which differs from the one printed out in [Nik]:

7j—1 .

o J+m—1

Nt =Y (N — NE) + ( j ) (3.21)
k=0

This formula can be simplified to the following expression of binomial coefficients:

N;ﬂ:l<j+m_1><j+m). (3.22)

m m—1 m—1

For m = 3, i.e. the three-dimensional wave equation treated before, this expres-
sion simplifies to

& 1 . . .

N} = g(g+1)(2g+1)(23+3), (3.23)
which coincides with the formula given in [Olv] p.317. In this case, the evalua-
tions for symmetries of order 0, ..4 would therefore be 1,10, 35, 84, 165.

If we consider the four-dimensional wave equation, i.e. m = 4, we get the expres-
sion

N} = 11—2(j+1)2(j+2)2(2j+3) (3.24)
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with first values for low orders 1,15, 84, 300, 825.

Hence, this now enables us to determine the number of linear independent sym-
metry operators of a given order. As we see, this number is equal to the number
of independent solutions of order j = n — 1 and those of order 5 = n. Thus, the
number of independent symmetry operators of order n is given by

N(n,m) = N + Ny, (3.25)

which can be simplified to

m— 2 m— 2
(3.26)
Note that the square in the denominator is missing in [Nik]. In the case m = 3,

the above formula can be written as
1
8(n+ 2)(n + 1)(n* + 3n + 3), (3.27)

and the number of independent symmetries in the orders from 0 to 5 can be
expected as 1,7,26,70,155, 301.
For m = 4, equation 3.26 becomes

%(n +3)(n+1)(n +22(0* + dn + 6), (3.28)
with symmetries of low orders in numbers of 1,11, 60, 225, 665, 1666.

Turning form the Poincaré group to the conformal group of the wave equations,
i.e. considering as generators also dilatations and inversions besides translations
and rotations, we are not yet able to state a general formula corresponding to
3.26 for the Poincaré group, but we have expressions in analogy to equations 3.27
and 3.28:

For the three-dimensional wave equation, that is

N(n,3) = %i(Zj F1)(+1)(2j +3) = é(n—i— 1)(n+2)(2n? + 6n + 3), (3.29)

where the numbers of independent symmetry operators for orders 0..5 would thus
be 1,11,46, 130, 295, 581.
In the case of the four-dimensional wave equation, the corresponding formula is

n

% 2. (G +1)°(G +2)%(25+3) = 31—6(n +3)%(n+2)%(n + 1), (3.30)

with first numerical evaluations 1, 16,100,400, 1225, 3136.
Especially the last sequence shows that the numbers of symmetries rises strongly
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with the order of the symmetries, as we would also expect from general intu-
ition. On the other hand, these values also show that the number of independent
symmetries is still really small compared to the number of relations (that can
be obtained as difference of the total number of operators and the above val-
ues). In these estimations, we have not yet distinguished between variational and
non-variational independent symmetry operators and not between absolute and
reduced relations, either.

So we are now able to check the above theoretical values experimentally by de-
termining the symmetries of the wave equation for given orders in several cases.
This is done by filtering the complete set of symmetry operators with the help of
the algorithm symtestgen, where only the number of results is of special interest.
(It can be considered some by-product on the way to calculating all conservation
laws.) These calculations, which will become quite challenging for the computer
and the implementation of the Gauss algorithm used during our algorithm if the
examples get larger, can be seen in the worksheets [ex3] and [ex4]. For a sub-
summation of the resulting numbers see the following tables:

3-dimensional Wave Equation

Poincaré Group
15t order | 2nd order | 3rd order
absolute relations - 16 182
relations after reduction - 1 7
variational symmetries 6 6 50
independent symmetries - 20 20
‘ total H 6 ‘ 43 259
Conformal Group
18t order | 2nd order | 3td order
absolute relations - 51 886
relations after reduction - 14 95
variational symmetries 7+3 10 94
independent symmetries 1 36 36
| total | 11 | 111 1111
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Poincaré Group

15t order | 2nd order | 3rd order
absolute relations - 50 875
relations after reduction - 1 11
variational symmetries 10 10 175
independent symmetries - 50 50
| total | 10 [ 111 | 1111 |
Conformal Group
18t order | 20d order | 3td order
absolute relations - 121 71
relations after reduction - 20 71
variational symmetries 11+4 15 315
independent symmetries 1 85 85!
| total | 16 | 241 | 3616 |

So these experimental results could be used to correct some equations given
in [Nik] and check the outcome of those estimations, as well as similar formulas
in [BSSS]. Furthermore, we can produce a complete system of independent sym-
metry operators, corresponding to the ones given by [Ibr].
Using a more sophisticated Gauss algorithm than the one implemented in MAPLE
or a less memory-consuming fashion of storing matrices, it should be easily possi-
ble to exceed the above results to higher orders and higher dimensions of the wave
equation, as well as to other variational problems with more than one dependent

variable.

L As this example exceeds the computer resources on the used system, the indicated values
have been taken from theoretical predictions.
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Appendix A

Notational Conventions

In the following examples, we are going to use the jet notation for differential
expressions.

> with(jets):
The coordinates of this jet space are the independent variables z!,.., z?...
> ivar:=[x,yl;

war := [z, y|
...the dependent variables u!,.., u? ...
> dvar:=[u,v];

dvar := [u, v]
...and the jet coordinates of certain degrees:
> jetcoor(l,ivar,dvar);

[z, Uy, Vg, vy]
which altogether are the coordinates of the jet space:
> alljets(2,ivar,dvar);

[T, Yy, U, v, Ug, Uy, Vg, Vy, Ug z, Uz y, Uy ys Va2, U,y Vy,yl
These jet coordinates correspond to the (total) derivatives of functions:
> totalder(u, [x],ivar,dvar);
Uy

and with prolongations:
> totalder(ulx], [yl,ivar,dvar);

Ug,y
To describe symmetries, we are going to use infinitesimal generators of vec-
tor fields of the form v = < b &z, u) (% )) + (23:1 balz, u) (% )) where,
e.g. a vector field

> vf:=[[x,[yl]l, [-y, [x]1];
of = [z, [y]], [-y, [=]]]
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denotes the infinitesimal symmetry generator z (2 ) —y (2 ) of a rotation.
A prolongation of the above vector field yields:

> pv:=prolvec(vf,1l,ivar,dvar);
v = [[—y, [I]], [xa [y”a [_U'y’ [uw]]a [uw’ [Uy”, [_Uy’ [Uw]]: [UCE’ [Uy]]]
with the characteristic of this prolonged vector field

> vec2char(pv,ivar,dvar);

[Y Uy — T Uy, Vg Y — Vy T]



Appendix B

Conservation Laws of the
Three-dimensional Wave
Equation

> restart;
> libname:=libname,"/usb/gehrt/maple":
(Specify the path where the packages jets and Desolv are saved)
> with(Desolv):
> with(jets):

Warning, the names colterm, comtab and genvec have been redefined
Consider the propagation of a wave in one time-coordinate ¢ and two spatial
coordinates z, y (independent variables) with elongation u (dependent variable),
e.g. a surface wave on a water bassin.
> ivar:=[t,x,y]l; dvar:=[u];
war = [t, z, y|
dvar := [u]
From the ansatz for the Lagrangian
> L:=1/2%(ult]"2-ulx]"2-ulyl~2);
Loy 1 5 1

L= EUt —E’U,I —éuy

we obtain the Euler-Lagrange equations from the relation E(L) =0 in the
following way:

> EL:=op(Euler(L,ivar,dvar));
EL = —uy + Ug 5 + Uy y
> DE:=-EL=0;
DE := w4 — Ug p — Uy, y =0
We can solve the resulting equation, known as the three-dimensional wave
equation, in so far that we can determine its infinitesimal symmetries explicitly:

> de :=[ ind2eqn(DE,ivar,dvar) ]:
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> le:=gendef(de,dvar,ivar):

> sol:=pdesolv(le[1],1le[2],1e[3]):

The infinitesimal generators of symmetries are written down as vector fields
using the following notation:

> 1lv:=genvec(sol[3],s0l[4],1e[3]):

> nops(1lv);
12

We remove the term depending on a general function from the list of
symmetries and get:

> 1lv:=subsop(1=NULL,1lv):

> 1v := [[ly, [t11, [t, [ylll, [[-2*yxt, [tl]l, [-2*yxx, [x]],
I>::|]|:—y‘2+x”2—t”2, [yll, [u*y, [uwlll, [[u, [u]l]l, [[-t~2-y~2-x"2,
tld,
E[ [-2xxxt, [x]], [-2xyxt, [yll, [uxt, [ulll, [ly, [x11, [-x, [ylll],

1’
> [£111, [[1, [ylll, [[-x, [t11, [-t, [x111, [[-xxt, [t1]1,
> [1/2xy~2-1/2%t"2-1/2%x"2, [x]1], [-y*x, [yll, [1/2%uxx, [u]l],
[[-t,
> [t11, [-x, [x1]1, [-y, [ylll, [[1, [x111]:
> mnops(1lv);

11

The notation of the vector field means, for instance, an element
> 1v[1];

[[y, [0, [t [y]]

denotes the vector field generated by y (% )—t (a% ).

So we now have determined the infinitesimal generators for all 11 symmetries
of the wave equation, which we are now going to check for their properties:

> sl:=symsplit(L,lv,ivar,dvar):
As follows, these symmetries split up into six variational symmetries and one
that can be made variational through a linear combination of the given ones:

> s1[1];

[[ly, [e]], &, Wl [y, [2]) [==, Tlll, (08, [0, (08, Tll), (1=, [, (=, (2], (L [=]1];
[[=t, [], [, [2]], [=v, W], [% u, [u]]]

> mnops(sl[1]);
7

Further, there are three divergence symmetries:

> s1[2];
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[([=2ty, [t]], [-2y=, [2]], [~ + 2 — ¢, [y]]; [uy, [u]l],
[[_Iz - y2 - t2= [t”’ [_tha [Z‘”, [_2tya [y]]’ [ut’ [u]]],

[t ) 397 — 52— 5 2% all, [y, [l 15w, (o]l
> mnops(sl[2]);
3
...and one remaining symmetry:
> s1[3];
[[[w, [u]]]

Corresponding to the variational and divergence symmetries, we get the fol-
lowing characteristics:

> char:=map(x->op(vec2char(x,ivar,dvar)), [op(s1[1]),op(s1[2])]):

After rearranging and changing the sign, if necessary...

> char := [ult],ulx],uly],x*ulyl-y*ulx],x*ult]+t*ulx],y*ult]+t*uly],

> 1/2xu+tru[t]+xxu[x] +y*uly],
> 2% (1/2%uwxx+x*ktxult]-1/2%ulx] *y~2+1/2*%ux] *t~2+1/2%u[x] *x~2+y*x*ulyl),
> wky+2xyxt*u[t] +2xy*x*u[x]+ulyl *y~2+ulyl ¥t "2-ulyl*x"2,
> wkt+ult]*y~2+ult]*t~2+u[t] *x~2+2xxxtrulx] +2*y*t*ulyl];
1
char := [ug, Uy, Uy, —Ug Y + Uy T, U T + Uy t, U Y + Uy L, §u+utt+uzx + uy Yy,

ur +2utr — ug Y 4 ug t? + ug 2 +2uyyz,
wy+2uity +2uy yx + uy t? — uy 1% 4 uy v,
ut+urz? +ury? +uet? +2utx + 2uyty]
> nops(char);
10

So now, we are able to compute the complete conservation laws of the wave
equation explicitly:

> cons:=map(c->conservation(c,L,ivar,dvar) ,char):

In this case, we are mainly interested in conserved densities (the time-component
of the conservation law). In the same step, the results are slightly simplified by
shifting over derivatives between the jet variables.

> CL:=map(x->intpart(x[1],ivar,dvar),cons):

First, we are going to check the conservation laws for the criterion Div P = Q E(L)
(Noether’s theorem):

> map(i->simplify(Div(cons[i],ivar,dvar)-char[i]*EL), [$1..nops(char)]);

[0, 0,0,0,0,0,0,0, 0, 0]
Comparing our results with those stated in literature [Olver, p.280], we have

found:
From translation in direction ¢ (time)
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> char[1];
Uy
we obtain the well-known conservation of energy.
> E:=-CL[1];
1 1 1

FE = §u$2+§uy2+§ut2

Translation in the spatial directions z, y
> char[2..3];
[Ua, Uy

yields conservation of momentum.
> Px:=-CL[2]; Py:=-CL[3];

Pr :=u;u,

Py := usu,
From these rotations
> char[4..6];

[—Ug Yy + Uy T, u T+ ugt, Uy + uyt

we get the following expressions:

> A:=-CL[4];
A= —wugy +uruy

> Mx:=-CL[5];
My =t ou?+ 20w+ uuat+ = vup
TI=—-TU;"+-TU Uy Uy —TU
2 g~ v T 27

> My:=-CL[6];
1 2 1 2 1 2
My ::§yu;C +§yuy +utuyt+§yut

Hence we recognize the conservation of A =2 Py — y P, M, = x F +t P, and
M,=yE+1tP,.
>  A-xxPy+y*Px;

0
> expand (Mx-x*E-t*Px) ;

0
> expand (My-y*E-t*Py) ;

0

The dilatation (made variational)
> char[7];

1
§u+utt+uwx+uyy
leads to the following expression
> DD:=-CL[7];



()

1 1 1 1
DD = s tug’ + ot + oyt + v @+ gy y o+ 5ty

and we can conclude the conservation law D =z P, + y P, + 4% +t E .
> expand (DD-x*Px-y*Py-1/2*u*u[t]-t*E) ;
0

Finally, from the inversions...
> char[8..10];

Uz +2utT —ugy? + Up t? +up 22 + 2u, YT, uyY + 2u by + 2up YT + uy 8 — uy 1%+ uy Y,

ut+urr? +ury? +ut? + 2ut x4+ 2uyty]
or, in a more familiar notation

> map(i->collect (i, [ulx],uly],ult]]),char[8..10]);

(—y*+ 8 +2%)us +uz+2utz+2u,yx, 2uzyxz + (2 — 22 + y*) uy + uy + 2us ty,

2upts +2uyty+ (22 + y? +12) up + u ]
arise these conservation laws:

> Ix:=-CL[8];

It == w2t + u® tr + uwp @ — ug Uy Y> + up g 8+ ugup 22 + 2upuy y T + u t
> Iy:=-CL[9];

Iy = w2ty +uty+uuy+2u s Yo + upuy t2 — upuy 22 + upuy y> + u ty
> It:=-CL[10];

1 1 1 1 1
It:= w2 + suly* + S w2+ 2uy ity +uut+ S ug’ 2 4 Sun’ 0¥ + S uy
+2uxutt:v+lu2y2+lu2t2+lu2x2—1u2

2 Y 2 Y 2 Y 2

and we recognize again the expressions It = xD +y A + % +tMz, Iy=yD—z A+ % +
and It = (22 +y?) E — 1 4+ 2¢ DD — #2 E as conserved densities.
> expand (Ix-x*DD-y*A-1/2*x*uxu[t]-t*Mx) ;

0

> expand (Iy-y*DD+x*A-1/2*y*uxu[t]-t*My) ;
0

> expand(It-(x"2+y~2)*E+1/2%u”2-2%t*DD+t ~2%E) ;
0

Thus, we now have reproduced and reviewed the data from [Olver p.280].

Higher Order Symmetries
To consider higher order symmetries now, we first have to transform the
characteristics of the first order symmetries into differential operators (recursion
operators).

> RO:=map(x->frechetc([x],ivar,dvar)[1,1],char):
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> REC:=map(x->list2op(x,ivar,dvar),R0):

> Dt:=REC[1]: Dx:=REC[2]: Dy:=REC[3]: Rxy:=REC[4]; Rxt:=REC[5]:
> Ryt:=REC[6]: Dd:=REC[7]: Jx:=REC[8]: Jy:=REC[9]: Jt:=REC[10]:

Rzy := a — —ytotalder(a, [z], [t, z, y], [u]) + = totalder(a, [y], [¢, =, y], [u])

A higher order symmetry results from successive products of such operators,
e.g.

> expand((Rxy @ Rxt) (u));

_Uaxyx‘_Uty“tyu%w4'uhy$24'u%yt$

Second order symmetries do not produce any new conservation laws, but those
of third order lead to 84 new ones. Some of them are treated in literature [Olver
p.340].

So we look at the following selection of third order symmetries (according to
Olver):

> S0:=[Dx0@3,Dx@Dx@Dt ,Dt@@3,DxORxy@Dx,DxO@Rxy@Dy-1/2*Dx@Dx~-1/2*Dy@Dy ,Dx@
> Rxt@Dx,Dx@Dd@Dx] :

with corresponding characteristics:

> SC:=map(a->a(u),S0);

1
SC = [uw,ac,za utywaw’ ut;tyt’ _yuwawaz +u$ay +$u$,$,y7 _yumyzay + EU/y,y +xu$ay7y - §u$,z;

3
ut,:c,:cx + ut,:c + uw,w,wta tut,w,z + §u:c,w +xuw,w,z + yuw,w,y]

Thus, the resulting conservation laws are:
> CO0S:=map(c->conservation(c,L,ivar,dvar),SC):
These results are checked using the criterion Div P = Q E(L) (Noether’s the-
orem):
> map(i->simplify(Div(COS[il,ivar,dvar)-SC[il*EL), [$1..nops(SC)]);
[0, 0,0, 0,0, 0, 0]
Now, we consider the conserved densities and simplify the expressions by
shifting over derivatives of jet variables:
> COL:=map(x->intpart(x[1],ivar,dvar),C0S):
> nops(COL) ;
7
So we are able to compare our results with the conserved densities given in
the table [Olver, p.340]:
> COL[1];
U,z Uz,
corresponds exactly to the given term...
> COL[2];
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1 5 1 ) )
5 ’U,:c,:c + g uw,wuy,y + 5 U't,:c + guw,y
> divnorm(expand (COL[2]-1/2* (ult,x]~2+ulx,x]"2+ulx,y]~2)),ivar,dvar);
0
corresponds to the literature expression up to trivial conservation laws....
> COL[3];
1 2 1 2 Ly
Ug, g Ut ¢ T Ut t Uy, y + 5 Ut " + 5 Uty — 5 Ug,t

> expand(COL[3]-1/2%(ult,t] 2+ult,x]"2+ult,y]"2));
Ug, ¢ Ut t T Ug ¢ Uy, y — Ut,t2

> simplify(subs(isolate(DE,ult,t]),%));

0
is equivalent to the given term for all solutions of the wave equation.
> COL[4];
1 1 1
_ut,;c u:c,z Yy + 5 ut,zc uw,y T — 5 Ut uz,y + 5 uz,zc ut,yx
> divnorm(expand (COL[4]-ult,x]*(x*ulx,y]l-y*ulx,x])) ,ivar,dvar);
0
holds up to trivial conservation laws.
> COL[5];
1 1 1 1 1 1 1
_5 Ut,w U;c,y y— Z Ug ut,w - Z ut,y uy + 5 ut,z xuy,y - 5 u:c,w ut,y y— Z Uy U;c,;c - Z Uy uy,y
1
+ 9 Uz, y Ut,y T
> divnorm(expand(COL[5]+(ulx,x]*(y*ult,yl+1/2*ult])-uly,yl*(x*xult,x]+1/
> 2xu[t]))),ivar,dvar);
0
corresponds to the literature value up to normalization.
> COL[6];
1 1 s 1 2 2
E Ug Uy, y + 3 TUp, p° — E Uy Ug, y + 3 Ug, g T Uy, y + 6 Ug,y” X+ Up g Uy z T+ B Up, g~ T
> Th:=1/2x(ult,x] "2+ulx,x] "2+ulx,y]"2);
1 1 1
Th = 5 ut,$2 + 5 uz,$2 + 5 uz’yQ
> divnorm(expand (COL[6]-(x*Th+t*ul[x,x]*ult,x])),ivar,dvar);
0

..confirms the expression from the table

> COL[7];
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1 1 1 1 1 ) 1 9
Z Uy ux,x + Z Ug ut,w + 5 ut,x um,y Yy + 5 uz,w ut,y Yy + 5 uz,m t + g uw,w tuy,y + 6 uw,y t
1

+ ut,z‘ X ux,x + 5 ut,a:2 t

> Ts:=x*xulx,x]*ult,x]+y*ulx,x]*ult,y]l+1/2*xulx,x]*ult];

1
Ts = Ut o TUg 5 + Ug, o Uty Y + 3 Up Uy, ¢
> divnorm(expand (COL[7]-(Ts+t*Th)) ,ivar,dvar);
0
and finally also this expression corresponds to the one given in the table [Olv]

p-340.
So the conservation laws which have been computed here are able to check

the examples given in the table and even correct some mistyping in some cases.

For a more detailed version of this example, see MAPLE worksheet [ex2] on

the CD ROM.



Appendix C

List of JETS functions

The following list gives the names and a short description of the functions which
were implemented in the MAPLE package JETS [BaHa| as a part of this work. A
detailed description for each procedure, its input parameters and output, includ-
ing examples of its application, can be found on the enclosed CD ROM. There,
these documentations are available both as (executable) MAPLE worksheets and
as MAPLE help pages as a part of the JETS package.

command
conservation

classcons
symsplit
symtestgen

Euler
Ordeuler
homotopy
Helmholtz
Adjoint
gcollect
intpart
divnorm
depcheck
getbas
Div

Curl

description

Compute the conservation laws according to Noether’s theo-

rem

Determine the classical conservation laws (variational case)

by Noether’s theorem

Split a vector space of symmetries into subspaces of varia-

tional, divergence and other symmetries

Filter independent generalized symmetries and variational

symmetries from a list of recursion operators

(Higher) Euler operator applied to an expression
(Ordinary) Euler operator applied to an expression
Total homotopy operator of Lagrangians and currents
Helmholtz operator applied to a source form

Compute the adjoint of a differential operator

Collect the terms of a vector field or differential operator
Normalize jet expressions with respect to their order
Normalize a jet expression up to divergences

Check a list of expressions for linear dependencies

Get a basis and linear relations from a list of expressions
Divergence of a current

Generalized curl of a (p — 2)-form
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current
interprod

opdot
eulprol

jsubs
Qsubs

Qcheck
Qinverse

coeffmatrix

linmatrix

grank
zerocol
Zerorow
lorder

oporder
roporder
vforder
rvforder
iorder
list2op

mat2op
list2vef
multinom
ind2mult
remain
sublist
ilint
dlint

sdlint

dlfac
const

APPENDIX C. LIST OF JETS FUNCTIONS

Divergence part (current) of a prolonged evolutionary vector
field

Total interior product for Lagrangians (p-forms) and currents
((p — 1)-forms)

Dot product of a differential operator with an expression
Prolongation of an evolutionary vector field using the Euler
operator

Substitute jet variables and their derivatives into a (jet) ex-
pression

Substitute variables and their (jet) derivatives into an expres-
sion

Check the properties of an integration path transformation
Compute the inverse of an integration path transformation
Transform a system of (linear) expressions into a coefficient
matrix

Transform a system of (linear) expressions into a coefficient
matrix for a given basis

Compute the rank of a Gauss-reduced matrix

Find the positions of zero columns in a matrix

Find the positions of zero rows in a matrix

Order function for differential operators and vector fields (as-
cending and descending order)

Order function for differential operators (ascending order)
Order function for differential operators (descending order)
Order function for vector fields (ascending order)

Order function for vector fields (descending order)

Order function for lists

Transform a differential operator from list notation to opera-
tor notation

Transform a list or matrix of differential operators from list
notation to operator notation

Transform a vector field from list notation to operator nota-
tion

Compute the multinomial coefficient of multiindices
Transform a list of variables into multiindex notation
Determine the difference of two sets or lists

Check if a list is contained in another one

Integrate a Lagrangian with A-substituted independent vari-
ables

Integrate a Lagrangian with A-substituted dependent vari-
ables

Integrate a Lagrangian with A-substituted dependent vari-
ables, singularity-respecting case

Partial derivative of integration path

Evaluate a function at 0 in all variables



Appendix D
CD ROM

The enclosed CD ROM contains all MAPLE worksheets and packages used in this
work.

The software documentation (help files) are stored in the directory helpfiles,
the example worksheets can be found in the directory worksheets. The maple
packages JETS and DESOLV are in the directory 1ib, with subdirectories for
MApPLE V R5 (maple5) and MAPLE 6 (maple6). When running any examples
in MAPLE, the correct path of the appropriate packages has to be specified with
the command libname.

The enclosed worksheets are suitable for both MAPLE V RELEASE 5.X and
MAPLE 6 and all operating systems.
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