
Satellite

In this section we apply homalg and OreModules to a linear system describing a satellite in a
circular equatorial orbit. See [Kai80, p. 60 and p. 145] and [Mou95, p. 6 and p. 11] and
the Library of Examples at [CQR07]. We load the package homalg and the ring-specific package
OreModules providing procedures for the algebraic analysis of linear systems over Ore algebras.

> restart;

> with(OreModules):

> with(homalg):

Since we only use the ring-specific package OreModules, we set the default package for homalg to
OreModules:

> ‘homalg/default‘:=‘OreModules/homalg‘;

homalg/default := OreModules/homalg

We define the Weyl algebra Alg = A1, where Dt acts as differentiation w.r.t. time t. Note that we
have to declare the parameters ω (angular velocity), m (mass of the satellite), r (radius component
in the polar coordinates), a and b of the system in the definition of the Ore algebra:

> Alg:=DefineOreAlgebra(diff=[Dt,t], polynom=[t],
comm=[omega,m,r,a,b]):

The linearized ordinary differential equations for the satellite in a circular orbit are given by the
following matrix R. These equations describe the motion of the satellite in the equatorial plane,
where the fifth and the sixth column of R incorporate the controls u1, u2 which represent radial
thrust resp. tangential thrust caused by rocket engines (see [Kai80, p. 60 and p. 145]).

> R:=matrix([[Dt,-1,0,0,0,0], [-3*omega^2,Dt,0,-2*omega*r,-a/m,0],
[0,0,Dt,-1,0,0], [0,2*omega/r,0,Dt,0,-b/(m*r)]]);

R :=
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We find a presentation of the module associated with the linear system over the Weyl algebra A1,
i.e. of the cokernel of R:

> M:=Cokernel(R, Alg);

M := [[[1, 0, 0] = [0, 0, 1, 0, 0, 0], [0, 1, 0] = [0, 0, 0, 0, 1, 0], [0, 0, 1] = [0, 0, 0, 0, 0, 1]],

[[Dt2 m r ω2 + Dt4 m r, 2 ω Dt a, −Dt2 b + 3 ω2 b]], “Presentation”,
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We compute the formal adjoint of the differential operator R:

> R_adj:=Involution(R, Alg);

R adj :=
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Some structural properties of the linear system under consideration are determined by computing
the extension modules with values in Alg of the cokernel of Radj. We compute the first extension
module:

> Ext_R(1, R_adj, Alg);
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From this presentation we see that the first extension module is zero. Therefore, the torsion
submodule of the cokernel of R is zero. Hence, the system of the satellite is controllable.

> TorsionSubmodule(R, Alg);

[[1 = [0, 0, 0, 0, 0, 0]], [1], “Presentation”, 0]

The next three statements demonstrate that this torsion submodule was computed by homalg

using the procedure ParametrizeModule which returns a differential operator P such that the
composition of R and P is zero. P defines a parametrization of the linear system given by R if
and only if the kernel of (.P ) equals the image of (.R), which means that the complex defined
by these morphisms is exact. If we consider functions in an injective cogenerator (e.g. smooth
functions, [CQR05, Zer00]), then we have Ry = 0 if and only if y = Pξ for some vector of functions
ξ. In general, P defines an embedding of the biggest possible factor module of the cokernel of R
into a free module.

> P:=ParametrizeModule(R, Alg);

P :=
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> Compose(R, P, Alg);
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> DefectOfHoms(R, P, Alg);

[[1 = [0, 0, 0, 0, 0, 0]], [1], “Presentation”, 0]

Since the system is controllable, we now check whether the system is flat [FLMR95, CQR05].
Every left-inverse of the parametrization P gives a flat output of the system:

> S:=Leftinverse(P, Alg);

S :=
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1
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Therefore, (ξ1 : ξ2)T = S(x1 : x2 : x3 : x4 : u1 : u2)T is a flat output of the system which
satisfies (x1 : x2 : x3 : x4 : u1 : u2)T = P (ξ1 : ξ2)T . We notice that this flat output exists only if
ab 6= 0. Hence, in the generic case the system is flat. Equivalently, the cokernel of R is free and, in
particular, projective. Let us remember that the full row-rank matrix R admits a right-inverse if
and only if the cokernel of R is projective. By the theorem of Quillen-Suslin, for modules over
commutative polynomial rings, projectiveness is the same as freeness. So, M is projective which
we could also have discovered by succeeding to compute a right-inverse of R:

> Rightinverse(R, Alg);
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Following [Mou95], we modify the description of the control of the satellite in the system. If
the rocket engines are commanded from the earth, then, due to transmission time, a constant
time-delay occurs in the system. Hence, we enlarge the above Ore algebra by a shift operator δ:

> Alg2:=DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
polynom=[t,s], comm=[omega,m,r,a,b], shift_action=[delta,t]):

The system matrix is given as follows:

> R2:=matrix([[Dt,-1,0,0,0,0],
[-3*omega^2,Dt,0,-2*omega*r,-a*delta/m,0], [0,0,Dt,-1,0,0],
[0,2*omega/r,0,Dt,0,-b*delta/(m*r)]]);

R2 :=
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We define a formal adjoint R2adj of R2 using an involution of Alg2:

> R2_adj:=Involution(R2, Alg2);

R2 adj :=
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We check controllability and parametrizability of the system:

> Ext_R(1, R2_adj, Alg2);
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We find that the first extension module with values in Alg2 of the cokernel of R2adj is genericall
y the zero module. Equivalently, the system is generically controllable i.e. parametrizable.We
continue to study the structural properties of the system by examining the algebraic properties of
the cokernel of R2. The next step is to compute the second extension module with values in Alg2
of N :

> Ext_R(2, R2_adj, Alg2);
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], [[0, δ], [δ, 0], [−2 ω Dt , Dt2 − 3 ω2], [Dt2, 2 ω Dt ]],

“Presentation”,
2 (s + 1)
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]

The second extension module is not zero. Hence, the cokernel of R2 is not projective. Since R2
has full row-rank, this is equivalent to the fact that R2 does not admit a right-inverse:

> Rightinverse(R2, Alg2);

FAIL

In the special case where a = 1 and b = 0, we have the following system matrix:

> R20:=subs(a=1,b=0, copy(R2));

R20 :=
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The a presentation of the first extension module with values in Alg2 of the cokernel of the formal
adjoint of R20 is given by:

> Ext_R(1, Involution(R20, Alg2), Alg2);
































1 =

















2 ω r
0
0
0
0

4 ω2

































, [Dt ], “Presentation” , −
1

(−1 + s)3

















Hence, we find a torsion element of the cokernel of R20 which corresponds to an autonomous ele-
ment of the satellite system. Using the procedure TorsionSubmodule of homalg this presentation
can be obtained directly:

> TorsionSubmodule(R20, Alg2);

[[1 = [6 m ω2, 0, 0, 3 ω r m, 0, 0]], [Dt ], “Presentation”, −
1

(−1 + s)3
]
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