Satellite

In this section we apply homalg and OreModules to a linear system describing a satellite in a circular equatorial orbit. See [Kai80, p. 60 and p. 145] and [Mou95, p. 6 and p. 11] and the Library of Examples at [CQR07]. We load the package homalg and the ring-specific package OreModules providing procedures for the algebraic analysis of linear systems over Ore algebras.

```
> restart;
> with(OreModules):
> with(homalg):
```

Since we only use the ring-specific package OreModules, we set the default package for homalg to OreModules:

```
> 'homalg/default':=`OreModules/homalg';
```

$$
\text { homalg/default }:=\text { OreModules/homalg }
$$

We define the Weyl algebra $A l g=A_{1}$, where $D t$ acts as differentiation w.r.t. time t. Note that we have to declare the parameters ω (angular velocity), m (mass of the satellite), r (radius component in the polar coordinates), a and b of the system in the definition of the Ore algebra:
$>$ Alg:=DefineOreAlgebra(diff=[Dt,t], polynom=[t], comm=[omega, $\mathrm{m}, \mathrm{r}, \mathrm{a}, \mathrm{b}$]):
The linearized ordinary differential equations for the satellite in a circular orbit are given by the following matrix R. These equations describe the motion of the satellite in the equatorial plane, where the fifth and the sixth column of R incorporate the controls $u 1, u 2$ which represent radial thrust resp. tangential thrust caused by rocket engines (see [Kai80, p. 60 and p. 145]).
$>R:=m a t r i x\left(\left[[D t,-1,0,0,0,0],\left[-3 * o m e g a^{\wedge} 2, D t, 0,-2 * o m e g a * r,-a / m, 0\right]\right.\right.$, $[0,0, \mathrm{Dt},-1,0,0],[0,2 *$ omega $/ \mathrm{r}, 0, \mathrm{Dt}, 0,-\mathrm{b} /(\mathrm{m} * \mathrm{r})]])$;

$$
R:=\left[\begin{array}{cccccc}
D t & -1 & 0 & 0 & 0 & 0 \\
-3 \omega^{2} & D t & 0 & -2 \omega r & -\frac{a}{m} & 0 \\
0 & 0 & D t & -1 & 0 & 0 \\
0 & \frac{2 \omega}{r} & 0 & D t & 0 & -\frac{b}{m r}
\end{array}\right]
$$

We find a presentation of the module associated with the linear system over the Weyl algebra A_{1}, i.e. of the cokernel of R :
$>M:=C o k e r n e l(R, A l g)$;

$$
\begin{aligned}
& M:=[[[1,0,0]=[0,0,1,0,0,0],[0,1,0]=[0,0,0,0,1,0],[0,0,1]=[0,0,0,0,0,1]], \\
& {\left[\left[D t^{2} m r \omega^{2}+D t^{4} m r, 2 \omega D t a,-D t^{2} b+3 \omega^{2} b\right]\right] \text {, "Presentation", }} \\
& \left.-\frac{s^{3}+s^{2}+s+1}{-1+s}+\frac{2}{(-1+s)^{2}}\right]
\end{aligned}
$$

We compute the formal adjoint of the differential operator R :

```
> R_adj:=Involution(R, Alg);
```

$$
R_{-} a d j:=\left[\begin{array}{cccc}
-D t & -3 \omega^{2} & 0 & 0 \\
-1 & -D t & 0 & \frac{2 \omega}{r} \\
0 & 0 & -D t & 0 \\
0 & -2 \omega r & -1 & -D t \\
0 & -\frac{a}{m} & 0 & 0 \\
0 & 0 & 0 & -\frac{b}{m r}
\end{array}\right]
$$

Some structural properties of the linear system under consideration are determined by computing the extension modules with values in $A l g$ of the cokernel of $R_{a d j}$. We compute the first extension module:

```
> Ext_R(1, R_adj, Alg);
    [[1=[l[l}
```

From this presentation we see that the first extension module is zero. Therefore, the torsion submodule of the cokernel of R is zero. Hence, the system of the satellite is controllable.

```
> TorsionSubmodule(R, Alg);
    [[1 = [0, 0, 0, 0, 0, 0]], [1], "Presentation", 0]
```

The next three statements demonstrate that this torsion submodule was computed by homalg using the procedure ParametrizeModule which returns a differential operator P such that the composition of R and P is zero. P defines a parametrization of the linear system given by R if and only if the kernel of (.P) equals the image of $(. R)$, which means that the complex defined by these morphisms is exact. If we consider functions in an injective cogenerator (e.g. smooth functions, [CQR05, Zer00]), then we have $R y=0$ if and only if $y=P \xi$ for some vector of functions ξ. In general, P defines an embedding of the biggest possible factor module of the cokernel of R into a free module.

```
> P:=ParametrizeModule(R,Alg);
```

$$
P:=\left[\begin{array}{cc}
0 & b a \\
0 & b a D t \\
b a & 0 \\
b a D t & 0 \\
-2 D t b \omega r m & -3 b m \omega^{2}+D t^{2} b m \\
a D t^{2} m r & 2 a D t m \omega
\end{array}\right]
$$

```
> Compose(R, P, Alg);
```

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

> DefectOfHoms(R, P, Alg);

$$
[[1=[0,0,0,0,0,0]],[1], \text { "Presentation", 0] }
$$

Since the system is controllable, we now check whether the system is flat [FLMR95, CQR05]. Every left-inverse of the parametrization P gives a flat output of the system:

```
> S:=Leftinverse(P, Alg);
```

$$
S:=\left[\begin{array}{cccccc}
0 & 0 & \frac{1}{b a} & 0 & 0 & 0 \\
\frac{1}{b a} & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, $(\xi 1: \xi 2)^{T}=S(x 1: x 2: x 3: x 4: u 1: u 2)^{T}$ is a flat output of the system which satisfies $(x 1: x 2: x 3: x 4: u 1: u 2)^{T}=P(\xi 1: \xi 2)^{T}$. We notice that this flat output exists only if $a b \neq 0$. Hence, in the generic case the system is flat. Equivalently, the cokernel of R is free and, in particular, projective. Let us remember that the full row-rank matrix R admits a right-inverse if and only if the cokernel of R is projective. By the theorem of Quillen-SusLin, for modules over commutative polynomial rings, projectiveness is the same as freeness. So, M is projective which we could also have discovered by succeeding to compute a right-inverse of R :

```
> Rightinverse(R,Alg);
```

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
-\frac{D t m}{a} & -\frac{m}{a} & \frac{2 \omega r m}{a} & 0 \\
-\frac{2 \omega m}{b} & 0 & -\frac{D t m r}{b} & -\frac{m r}{b}
\end{array}\right]
$$

Following [Mou95], we modify the description of the control of the satellite in the system. If the rocket engines are commanded from the earth, then, due to transmission time, a constant time-delay occurs in the system. Hence, we enlarge the above Ore algebra by a shift operator δ :

```
> Alg2:=DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
polynom=[t,s], comm=[omega,m,r,a,b], shift_action=[delta,t]):
```

The system matrix is given as follows:

```
> R2:=matrix([[Dt, -1,0,0,0,0],
[-3*omega^2,Dt,0,-2*omega*r,-a*delta/m,0], [0,0,Dt,-1,0,0],
[0,2*omega/r,0,Dt,0,-b*delta/(m*r)]]);
\[
R \text { 2 }:=\left[\begin{array}{cccccc}
D t & -1 & 0 & 0 & 0 & 0 \\
-3 \omega^{2} & D t & 0 & -2 \omega r & -\frac{a \delta}{m} & 0 \\
0 & 0 & D t & -1 & 0 & 0 \\
0 & \frac{2 \omega}{r} & 0 & D t & 0 & -\frac{b \delta}{m r}
\end{array}\right]
\]
```

We define a formal adjoint $R 2_{a d j}$ of $R 2$ using an involution of $A l g 2$:

$$
\begin{aligned}
& >\text { R2_adj:=Involution (R2, Alg2) ; } \\
& \qquad R 2 _a d j:=\left[\begin{array}{cccc}
-D t & -3 \omega^{2} & 0 & 0 \\
-1 & -D t & 0 & \frac{2 \omega}{r} \\
0 & 0 & -D t & 0 \\
0 & -2 \omega r & -1 & -D t \\
0 & \frac{a \delta}{m} & 0 & 0 \\
0 & 0 & 0 & \frac{b \delta}{m r}
\end{array}\right]
\end{aligned}
$$

We check controllability and parametrizability of the system:

$$
\begin{aligned}
& >\text { Ext_R(1, R2_adj, Alg2) ; } \\
& \qquad\left[\left[\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],[1], \text { "Presentation", } 0\right]
\end{aligned}
$$

We find that the first extension module with values in $\operatorname{Alg} 2$ of the cokernel of $R 2_{a d j}$ is genericall y the zero module. Equivalently, the system is generically controllable i.e. parametrizable.We continue to study the structural properties of the system by examining the algebraic properties of the cokernel of $R 2$. The next step is to compute the second extension module with values in Alg2 of N :

```
> Ext_R(2, R2_adj, Alg2);
```

$$
\begin{aligned}
& {\left[\left[[1,0]=\left[\begin{array}{l}
0 \\
1
\end{array}\right],[0,1]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right],\left[[0, \delta],[\delta, 0],\left[-2 \omega D t, D t^{2}-3 \omega^{2}\right],\left[D t^{2}, 2 \omega D t\right]\right],\right.} \\
& \text { "Presentation", } \left.\frac{2(s+1)}{(-1+s)^{2}}\right]
\end{aligned}
$$

The second extension module is not zero. Hence, the cokernel of $R 2$ is not projective. Since $R 2$ has full row-rank, this is equivalent to the fact that $R 2$ does not admit a right-inverse:
> Rightinverse(R2, Alg2);

FAIL

In the special case where $a=1$ and $b=0$, we have the following system matrix:

```
> R20:=subs(a=1,b=0, copy(R2));
```

$$
R 20:=\left[\begin{array}{cccccc}
D t & -1 & 0 & 0 & 0 & 0 \\
-3 \omega^{2} & D t & 0 & -2 \omega r & -\frac{\delta}{m} & 0 \\
0 & 0 & D t & -1 & 0 & 0 \\
0 & \frac{2 \omega}{r} & 0 & D t & 0 & 0
\end{array}\right]
$$

The a presentation of the first extension module with values in Alg2 of the cokernel of the formal adjoint of $R 20$ is given by:
> Ext_R(1, Involution(R20, Alg2), Alg2);

$$
\left.\left[\left[\begin{array}{c}
2 \omega r \\
0 \\
0 \\
0 \\
0 \\
4 \omega^{2}
\end{array}\right]\right],[D t], \text { "Presentation" },-\frac{1}{(-1+s)^{3}}\right]
$$

Hence, we find a torsion element of the cokernel of $R 20$ which corresponds to an autonomous element of the satellite system. Using the procedure TorsionSubmodule of homalg this presentation can be obtained directly:

```
> TorsionSubmodule(R20, Alg2);
```

$$
\left[\left[1=\left[6 m \omega^{2}, 0,0,3 \omega r m, 0,0\right]\right],[D t], \text { "Presentation", }-\frac{1}{(-1+s)^{3}}\right]
$$

Author: Daniel Robertz

Date: 2005-12-31
Last modified: 2007-06-22 17:41

References

[BR] Mohamed Barakat and Daniel Robertz, homalg - A meta-package for homological algebra, submitted. arXiv:math.AC/0701146 and (http://wwwb.math.rwth-aachen.de/homalg).
[BR07] , homalg project, 2004-2007, (http://wwwb.math.rwth-aachen.de/homalg).
[CQR05] F. Chyzak, A. Quadrat, and D. Robertz, Effective algorithms for parametrizing linear control systems over Ore algebras, Appl. Algebra Engrg. Comm. Comput. 16 (2005), no. 5, 319376, (http://www-sop.inria.fr/cafe/Alban.Quadrat/PubsTemporaire/AAECC.pdf). MR MR2233761 (2007c:93041) 2
[CQR07] Frédéric Chyzak, Alban Quadrat, and Daniel Robertz, OreModules: a symbolic package for the study of multidimensional linear systems, Applications of time delay systems, Lecture Notes in Control and Inform. Sci., vol. 352, Springer, Berlin, 2007, (http://wwwb.math.rwth-aachen.de/OreModules), pp. 233264. MR MR2309473 1
[FLMR95] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples, Internat. J. Control 61 (1995), no. 6, 1327-1361. MR MR1613557 2
KKai80] Thomas Kailath, Linear systems, Prentice-Hall Inc., Englewood Cliffs, N.J., 1980, Prentice-Hall Information and System Sciences Series. MR MR569473 (82a:93001) 1
[Mou95] H. Mounier, Propriétés des systèmes linéaires à retards: aspects théoriques et pratiques, Ph.D. thesis, University of Orsay, France, 1995. 1, 3
[Zer00] Eva Zerz, Topics in multidimensional linear systems theory, Lecture Notes in Control and Information Sciences, vol. 256, Springer-Verlag London Ltd., London, 2000. MR MR1781175 (2001e:93002) 2

Lehrstuhl B für Mathematik, RWTH-Aachen University, 52062 Germany
E-mail address: daniel@momo.math.rwth-aachen.de

