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Chapter 1

Introduction

1.1 The package Blocks

The package Blocks is a GAP4 package containing all the code developped to address J.-P. Serre’s
question regarding the group of components of the unitary group of a group algebra (or, more gener-
ally, of an involutive algebra) in characteristic 2. The unitary group of an involutive algebra A is the
affine algebraic group defined by the equation S(a)a = 1, where S denotes the involution of A. This
question appeared naturally in [Ser14].

The specific question, communicated to our workgroup by Gunter Malle, was about the group
algebra of A5. The included programs are generally only feasible for small group orders. Together
with further theoretical arguments the answer to the question for A5 is now in computational reach:
The group of components of the unitary group of the group ring F2A5 is trivial. A modern computer
took 19 hours to produce this answer.

A considerable part of the package now consists of algorithms for standard block theoretical com-
putations. These algorithms, written for further refined computer-assisted experiments, were suprs-
ingly missing in GAP4. The package Blocks is based on the homalg project [Thpa13], [BLH11],
[BLH12] which is entirely written in GAP4 [GAP12], [BL98].

The downloadable archive and the online documentation of the GAP4 package Blocks can
be found under (http://homalg.math.rwth-aachen.de/~barakat/homalg-project/Blocks).
The source code can be viewed under (http://github.com/homalg-project/Blocks). Blocks
requires new versions of several packages of the homalg project which have been released with GAP
4.7.7. It also requires the (not released yet) package ctblocks (v0.9.1) of Thomas Breuer.

The online server (see http://homalg.math.rwth-aachen.de/) offers a free web-based access
to GAP4 and Singular with the newest packages of the homalg project preinstalled. Only a modern
browser is required. This access can either be used for further computer-assisted experiments or
simply to reproduce and verify any computation shown in this document. For this one can simply cut
and paste the input lines of any example shown below (in the correct order); the GAP prompt gap>
will be automatically suppressed during pasting.
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Chapter 2

The group of components of the unitary
group of a group ring

2.1 Notation

Let A be a k-algebra with k-linear involution S over a field k. The unitary group U(A) is the smooth
linear algebraic group defined by the equation S(a)a = 1. Let I be an S-stable two-sided ideal IEA.
The natural epimorphism A→ A/I induces a morphism

ϕA/I : U(A)→U(A/I)

of algebraic groups. This morphism is in characteristic 2 generally not onto. Denote by

U(A, I) :=U(A)∩ (1+ I) and U(A,A/I) :=U(A)/U(A, I)

the kernel and coimage of ϕA/I , respectively. Given another S-stable ideal J ⊂ I define

U(A, I/J) :=U(A, I)/U(A,J).

The subfactor group U(A, I/J) is the coimage of the composed morphism

ϕI/J : U(A, I) ↪→U(A)
ϕA/J→ U(A/J) ↪→ A/J.

When computing we will rather consider its corestriction to the affine subspace (1+ I)/J ⊂ A/J

ϕI/J : U(A, I)→ (1+ I)/J.

Since we can compute (Zariski closures of) images of affine morphisms we can compute U(A, I/J),
up to a natural isomorphism.

Let r be the radical of A. We will call the factor group U(A,A/r) the upper part, the subfactor
group U(A,r/r2) the middle part, and the subgroup U(A,r2) the lower part of the unitary group U(A).

2.2 The algorithm used to compute the closed image

The defining ideal of the closure of the image of a morphism of affine varieties is the kernel of the
associated morphism of coordinate rings. Computing the kernel leads to an elimination problem in a
polynomial ring.
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Let k[x1, . . . ,xi] be the coordinate ring of the affine variety 1+ I and k[y1, . . . ,yd ] the coordinate
ring of (1+ I)/J. After an appropriate choice of coordinates (adapted to the inclusion I ⊃ J) the
projection π : 1+ I� (1+ I)/J amounts to mapping yk 7→ xk for all k = 1, . . . ,d := dimk I/J. Finally,

the associated morphism of coordinate rings Γ(OU(A,I)) = k[x1, . . . ,xi]/M
ϕI/J← k[y1, . . . ,yd ] is given by

mapping yk 7→ xk +M for all k = 1, . . . ,d, where M is the defining ideal of U(A, I) ⊂ 1+ I. For an
example see Subsection 2.10.1. For details on the A5 computation see the comments in subsection
2.12.2.

Hence, computing the kernel reduces to intersecting the ideal M with the subring k[x1, . . . ,xd ] ≤
k[x1, . . . ,xi] (identified via π with k[y1, . . . ,yd ]), or, equivalently, eliminating the indeterminates
xd+1, . . . ,xi. This can be done by computing a Gröbner basis of M with respect to the block elim-
ination ordering ((x1, . . . ,xd),(xd+1, . . . ,xi)).

Computations with elimination orderings are known to be expensive. The choice of adapted co-
ordinates has an enormous impact on the run-time. Depending on this choice the computation of a
kernel via elimination might range from few hours to several days. It might very well be possible that
a good choice of coordinates could make the elimination doable by hand.

2.3 Some experimental facts on the unitary groups of 2-blocks

Let G be a finite group and A = F2G its group algebra with radical r. By G◦ we denote the kernel,
and by EG the cokernel of the composition G ↪→U(A)� π0(U(A)) (cf. [Ser05, Section 2]). G◦ is the
characteristic subgroup of G generated by the squares and the involutions. Denote by B0,B1, . . . ,Bn

the involution-stable 2-blocks of A with radicals r0,r1, . . . ,rn, respectively, where B0 is the principal
2-block.

The following statements are true for all computed examples and imply that

EG ∼= π0(U(A,A/r))∼=
n

∏
j=1

π0(U(B j,B j/r j)).

Note that the product does not involve the principal block. A general validity of this isomorphism
would imply that EG is trivial for all finite 2-groups (the latter statement would also follow from
weaker statements).

1. U(B j,r
i
j/r

i+1
j ) is an affine space (hence connected) for all j and all i≥ 2.

2. The natural morphism G/G◦→ π0(U(B0,B0/r
2
0)) is an isomorphism.

In particular if U(B0,B0/r0) is connected (which is not always the case, see 2.11.1 and 2.11.2)
then G/G◦ ∼= π0(U(B0,r0/r

2
0)).

3. U(B j,r j/r
2
j) is connected for all j > 0.

4. The natural morphism G/G◦→ π0(U(B j,B j/r j)) is surjective (for all j > 0).

2.4 The paper of Bovdi and Rosa

The results of the paper [BR00] determine the ζ -function of the unitary group in characteristic 2,
and imply that EG = 0 for some classes of non-Abelian 2-groups. They denote the group UG(k) of
k-rational points of UG by V∗(kG). Using the formula dimUG = 1

2 (|G|+ |G[2]|)− 1 and the order
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of G/G◦ one can unify the formulation of all results in loc. cit.. This raises the question of whether
the unified formulation of these results is valid for all finite 2-groups. An affirmative answer would
imply that EG = 0 for all finite 2-groups.

THEOREM (Unified formulation of [BR00, Theorems 1 and 2]). For all 2-groups listed below

|V∗(kG)|= |UG(k)|= |G/G◦| · |k|dimUG .

Here G is one of the following 2-groups:

Thm 1:
Let H is an extraspecial 2-group of order 22n+1, then

1. G = H, or

2. G is an central product H with a cyclic group of order 4.

Thm 2:
G has an Abelian subgroup A of index 2 and an element b which inverts each element of A (i.e.,
ab = a−1), where

1. b is of order 2, or

2. b is of order 4.

In the first three cases of the theorem |G/G◦|= 1. In the last case the equality is stated with 2 · |A2[2]|
instead of |G/G◦|. (A2 := {a2 | a ∈ A} and A[2] := {a ∈ A | ord a | 2}. Of course, these two subsets
are subgroups when A is Abelian, namely the image and kernel of the squaring homomorphism.) To
see that the above two numbers coincide we may argue as follows. From ord b = 4 we conclude that
G/G◦ = C2×A/A◦. Since A is Abelian we can write A◦ = A2A[2]. We claim that A/A◦ ∼= A2[2]. It
suffices to check the previous isomorphism for cyclic 2-groups A = C2n , n ≥ 1. Indeed C2

2n = C2n−1

and C2n [2] =C2. Hence,

C2n/C◦2n ∼=C2
2n [2]∼=C2 for n > 1, otherwise trivial.

2.5 Description of the input commands

• The input for the computer is colored red and preceded by the blue prompt “gap>”. A semi-
colon indicates the end of a command. Two consecutive semicolons suppress the output of the
preceding command.

• The output of the computer is black.

• LoadPackage( "Blocks" ) loads the GAP package Blocks.

• StructureDescription( G ) prints one of the standard names of the isomorphism type of the
group G.

• SerreFactorGroup computes G/G◦.
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• k := HomalgRingOfIntegersInSingular( p^d ) triggers the Gröbner basis oracle Singu-
lar and defines there the ground field k := GF(pd).

• SetCoefficientsRingForPolynomialAlgebra( kG, k ) tells the computer to perform all
Gröbner basis related computations for kG in the oracle Singular over k.

• DefiningIdealOfLowerPartOfUnitaryGroup( Bj ) computes the defining ideal of the
subgroup U(B j,r

2
j).

• IsLowerPartExtensionOfAffineSpaces( Bj ) checks statement 1 in Section 2.3.

• DefiningIdealOfMiddlePartOfUnitaryGroup( Bj ) computes the defining ideal of the
subfactor group U(B j,r j/r

2
j), which is not necessarily connected.

• DefiningIdealOfUpperPartOfUnitaryGroup( Bj ) computes the defining ideal of the
factor group U(B j,B j/r j), which is not necessarily connected.

• I verified statement 4 for all computed examples with nontrivial EG. This verification is still not
included below.

• CentralNonPrincipalIdempotentsOfInvolutiveAlgebra( kG ) computes the list of cen-
tral non-principal primitive idempotents of the group algebra kG, viewed as an involutive alge-
bra. This means that the list contains all real block idempotents, with the principal idempotent
excluded, and for each complex block idempotent ei the sum with its conjugate idempotent
Involution(ei).

• Perform( L , command ) performs command (e.g., Display) on each entry of the list L .

• RadicalDecomposition( I ) computes the list of associated primes of the ideal I .
Even if the ideal I is radical (which is normally the case here) the computation of
RadicalDecomposition( I ) is generally faster than PrimaryDecomposition( I ) since the
computer skips the search for primary non-prime ideals.

2.6 Comments on the computer output

• The matrix to which outputs like “An ideal generated by the entry of the above
matrix” or “An ideal generated by the 3 entries of the above matrix” is refer-
ring is not printed with surrounding brackets.

• In the output of CentralNonPrincipalIdempotentsOfGroupAlgebra( kG ) the symbol
Z(2^d)^n stands for the n-th power of a primitive element Z(2^d) of GF(2d). In particu-
lar, Z(2)^0 stands for the (common) one in all finite fields GF(2d)’s. This is a convention of
the computer algebra system GAP which I cannot influence. When ideals are displayed the
symbol Z2_d^n corresponds to Z(2^d)^n.

• The adjective “torsion-free” in outputs like “A torsion-free ideal ...” is of course clear
from the context. We might suppress such superfluous adjectives in the future.
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2.7 Order 6

2.7.1 S3
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 6, 1 );; StructureDescription( G );; G;
S3
gap> StructureDescription( SerreFactorGroup( G ) );
"1"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 2 generators>
gap> DimensionOfUnitaryGroup( kG );
4
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

We first consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 2 generators>,
(dimension 2)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A zero vector subspace>
gap> AffineDimension( L0 );
0

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦:

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A zero ideal>
gap> AffineDimension( M0 );
1

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( I0 );
0
gap> Dec0 := RadicalDecomposition( I0 );
[ <A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( Dec0, Display );
y1+1

An ideal generated by the entry of the above matrix

Now we consider the non-principal block:
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Example
gap> B := RealNonPrincipalBlocksOfGroupAlgebra( kG );
[ <two-sided ideal in <algebra-with-one of dimension 6 over GF(2)>,

(dimension 4)> ]
gap> B1 := B[1];
<two-sided ideal in <algebra-with-one of dimension 6 over GF(2)>,
(dimension 4)>

gap> IsSpecial( B1 );
false

Verify statement 1 for j = 1, i.e., U(B1,r
i
1/r

i+1
1 ) is connected for all i≥ 2:
Example

gap> DefiningIdealOfLowerPartOfUnitaryGroup( B1 );
<A zero vector subspace>

Verify statement 3, i.e., U(B1,r1/r
2
1) is connected:

Example
gap> M1 := DefiningIdealOfMiddlePartOfUnitaryGroup( B1 );
<A zero vector subspace>

Verify the formula for EG, i.e., EG ∼= π0(U(A,A/r))∼= ∏
n
j=1 π0(U(B j,B j/r j))∼=C2:

Example
gap> I1 := DefiningIdealOfUpperPartOfUnitaryGroup( B1 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( I1 );
3
gap> AffineDegree( I1 );
2
gap> Display( I1 );
y1^2+y2^2+y1*y3+y3^2+y2*y4+y4^2+1

An ideal generated by the entry of the above matrix

2.8 Order 12

2.8.1 C3 : C4

This is the smallest group G with nontrivial EG and the unique of order 12.
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 12, 1 );; StructureDescription( G );; G;
C3 : C4
gap> StructureDescription( SerreFactorGroup( G ) );
"C2"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 3 generators>
gap> DimensionOfUnitaryGroup( kG );
6
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );
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We first consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 3 generators>,
(dimension 4)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A zero ideal>
gap> AffineDimension( L0 );
2

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦:

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M0 );
0
gap> m0 := RadicalDecomposition( M0 );
[ <A principal torsion-free ideal given by a cyclic generator>,

<A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( m0, Display );
y1+1

An ideal generated by the entry of the above matrix
y1

An ideal generated by the entry of the above matrix

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( I0 );
0
gap> Dec0 := RadicalDecomposition( I0 );
[ <A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( Dec0, Display );
y1+1

An ideal generated by the entry of the above matrix

Now we consider the non-principal block:
Example

gap> B := RealNonPrincipalBlocksOfGroupAlgebra( kG );
[ <two-sided ideal in <algebra-with-one of dimension 12 over GF(2)>,

(dimension 8)> ]
gap> B1 := B[1];
<two-sided ideal in <algebra-with-one of dimension 12 over GF(2)>,
(dimension 8)>

gap> IsSpecial( B1 );
true
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Verify statement 1 for j = 1, i.e., U(B1,r
i
1/r

i+1
1 ) is connected for all i≥ 2:
Example

gap> DefiningIdealOfLowerPartOfUnitaryGroup( B1 );
<A zero vector subspace>

Verify statement 3, i.e., U(B1,r1/r
2
1) is connected:

Example
gap> M1 := DefiningIdealOfMiddlePartOfUnitaryGroup( B1 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M1 );
3
gap> Display( M1 );
y1

An ideal generated by the entry of the above matrix

Verify the formula for EG, i.e., EG ∼= π0(U(A,A/r))∼= ∏
n
j=1 π0(U(B j,B j/r j))∼=C2:

Example
gap> I1 := DefiningIdealOfUpperPartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 7 generators>
gap> AffineDimension( I1 );
1
gap> Dec1 := RadicalDecomposition( I1 );
[ <A torsion-free ideal given by 3 generators>,

<A torsion-free ideal given by 3 generators> ]
gap> Perform( Dec1, Display );
y4,
y2,
y1^2+y1*y3+y3^2+1

An ideal generated by the 3 entries of the above matrix
y3,
y1,
y2^2+y2*y4+y4^2+1

An ideal generated by the 3 entries of the above matrix

The ζ -function (in characteristic 2) of the 1-dimensional degree 4 factor group U(kG,kG/r) is

ζU(kG,kG/r)(t) =
(1+ t)2

(1−2t)2 ,

where r is the radical of kG. As shown above, the number of connected components of U(kG,kG/r)
equals |EG|= 2.

2.9 Order 20

2.9.1 C5 : C4

This is the second smallest group G with nontrivial EG and the unique of order 20.
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Example
gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 20, 1 );; StructureDescription( G );; G;
C5 : C4
gap> StructureDescription( SerreFactorGroup( G ) );
"C2"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2^2), with 3 generators>
gap> DimensionOfUnitaryGroup( kG );
10
gap> d := DegreeOverPrimeField( LeftActingDomain( kG ) );
2
gap> k := HomalgRingOfIntegersInSingular( 2, d );
GF(2^2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

We first consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2^2), with 3 generators>,
(dimension 4)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A zero ideal>
gap> AffineDimension( L0 );
2

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦:

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M0 );
0
gap> m0 := RadicalDecomposition( M0 );
[ <A principal torsion-free ideal given by a cyclic generator>,

<A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( m0, Display );
y1+1

An ideal generated by the entry of the above matrix
y1

An ideal generated by the entry of the above matrix

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
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gap> AffineDimension( I0 );
0
gap> Dec0 := RadicalDecomposition( I0 );
[ <A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( Dec0, Display );
y1+1

An ideal generated by the entry of the above matrix

Now we consider the non-principal block B1:
Example

gap> B := RealNonPrincipalBlocksOfGroupAlgebra( kG );
[ <two-sided ideal in <algebra-with-one of dimension 20 over GF(2^2)>,

(dimension 8)>,
<two-sided ideal in <algebra-with-one of dimension 20 over GF(2^2)>,
(dimension 8)> ]

gap> B1 := B[1];
<two-sided ideal in <algebra-with-one of dimension 20 over GF(2^2)>,
(dimension 8)>

gap> IsSpecial( B1 );
true

Verify statement 1 for j = 1, i.e., U(B1,r
i
1/r

i+1
1 ) is connected for all i≥ 2:
Example

gap> DefiningIdealOfLowerPartOfUnitaryGroup( B1 );
<A zero vector subspace>

Verify statement 3, i.e., U(B1,r1/r
2
1) is connected:

Example
gap> M1 := DefiningIdealOfMiddlePartOfUnitaryGroup( B1 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M1 );
3
gap> Display( M1 );
y1

An ideal generated by the entry of the above matrix

Verify the formula for EG, i.e., EG ∼= π0(U(A,A/r))∼= ∏
n
j=1 π0(U(B j,B j/r j))∼=C2×C2:

Example
gap> I1 := DefiningIdealOfUpperPartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 7 generators>
gap> AffineDimension( I1 );
1
gap> Dec1 := RadicalDecomposition( I1 );
[ <A torsion-free ideal given by 3 generators>,

<A torsion-free ideal given by 3 generators> ]
gap> Perform( Dec1, Display );
y4,
y2,
y1^2+(Z2_2)*y1*y3+y3^2+(Z2_2+1)
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An ideal generated by the 3 entries of the above matrix
y3,
y1,
y2^2+(Z2_2)*y2*y4+y4^2+(Z2_2+1)

An ideal generated by the 3 entries of the above matrix

Now we consider the non-principal block B2:
Example

gap> B2 := B[2];
<two-sided ideal in <algebra-with-one of dimension 20 over GF(2^2)>,
(dimension 8)>

gap> IsSpecial( B2 );
true

Verify statement 1 for j = 2, i.e., U(B2,r
i
2/r

i+1
2 ) is connected for all i≥ 2:
Example

gap> DefiningIdealOfLowerPartOfUnitaryGroup( B2 );
<A zero vector subspace>

Verify statement 3, i.e., U(B2,r2/r
2
2) is connected:

Example
gap> M2 := DefiningIdealOfMiddlePartOfUnitaryGroup( B2 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M2 );
3
gap> Display( M2 );
y1

An ideal generated by the entry of the above matrix

Verify the formula for EG, i.e., EG ∼= π0(U(A,A/r))∼= ∏
n
j=1 π0(U(B j,B j/r j))∼=C2×C2:

Example
gap> I2 := DefiningIdealOfUpperPartOfUnitaryGroup( B2 );
<A torsion-free ideal given by 7 generators>
gap> AffineDimension( I2 );
1
gap> Dec2 := RadicalDecomposition( I2 );
[ <A torsion-free ideal given by 3 generators>,

<A torsion-free ideal given by 3 generators> ]
gap> Perform( Dec2, Display );
y4,
y2,
y1^2+(Z2_2+1)*y1*y3+y3^2+(Z2_2)

An ideal generated by the 3 entries of the above matrix
y3,
y1,
y2^2+(Z2_2+1)*y2*y4+y4^2+(Z2_2)

An ideal generated by the 3 entries of the above matrix
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2.10 Order 24

The first three groups have nontrivial EG.

2.10.1 C2 x (C3 : C4)
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 24, 7 );; StructureDescription( G );; G;
C2 x (C3 : C4)
gap> StructureDescription( SerreFactorGroup( G ) );
"C2"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 4 generators>
gap> DimensionOfUnitaryGroup( kG );
13
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

We first consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 8)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( L0 );
4
gap> Display( L0 );
x2+x4

An ideal generated by the entry of the above matrix

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦:

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M0 );
1
gap> m0 := RadicalDecomposition( M0 );
[ <A principal torsion-free ideal given by a cyclic generator>,

<A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( m0, Display );
y1+y2+1

An ideal generated by the entry of the above matrix
y1+y2
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An ideal generated by the entry of the above matrix

Now we show the morphism ϕr0/r
2
0

of which the defining ideal M0 is the kernel:
Example

gap> phi := DefiningMorphismOfMiddlePartOfUnitaryGroup( B0 );
<A homomorphism of rings>
gap> Display( phi );
GF(2)[x1,x2,x3,x4,x5,x6,x7]/(x1*x2+x2^2+x1+x2+x3+x4+x5+x6, x1^2+x1*x2+x3+x4+x5+x6)

^
|

[ x1, x2 ]
|
|

GF(2)[y1,y2]
gap> N0 :=KernelSubobject( phi );
<A principal torsion-free ideal given by a cyclic generator>
gap> N0 = M0;
true

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( I0 );
0
gap> Dec0 := RadicalDecomposition( I0 );
[ <A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( Dec0, Display );
y1+1

An ideal generated by the entry of the above matrix

Now we consider the non-principal block:
Example

gap> B := RealNonPrincipalBlocksOfGroupAlgebra( kG );
[ <two-sided ideal in <algebra-with-one of dimension 24 over GF(2)>,

(dimension 16)> ]
gap> B1 := B[1];
<two-sided ideal in <algebra-with-one of dimension 24 over GF(2)>,
(dimension 16)>

gap> IsSpecial( B1 );
true

Verify statement 1 for j = 1, i.e., U(B1,r
i
1/r

i+1
1 ) is connected for all i≥ 2:
Example

gap> L1 := DefiningIdealOfLowerPartOfUnitaryGroup( B1 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( L1 );
3
gap> Display( L1 );
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x3

An ideal generated by the entry of the above matrix

Verify statement 3, i.e., U(B1,r1/r
2
1) is connected:

Example
gap> M1 := DefiningIdealOfMiddlePartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 4 generators>
gap> AffineDimension( M1 );
4
gap> Display( M1 );
y6+y8,
y3,
y2+y5,
y1

An ideal generated by the 4 entries of the above matrix

Verify the formula for EG, i.e., EG ∼= π0(U(A,A/r))∼= ∏
n
j=1 π0(U(B j,B j/r j))∼=C2:

Example
gap> I1 := DefiningIdealOfUpperPartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 7 generators>
gap> AffineDimension( I1 );
1
gap> Dec1 := RadicalDecomposition( I1 );
[ <A torsion-free ideal given by 3 generators>,

<A torsion-free ideal given by 3 generators> ]
gap> Perform( Dec1, Display );
y4,
y2,
y1^2+y1*y3+y3^2+1

An ideal generated by the 3 entries of the above matrix
y3,
y1,
y2^2+y2*y4+y4^2+1

An ideal generated by the 3 entries of the above matrix

2.10.2 C3 : C8
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 24, 1 );; StructureDescription( G );; G;
C3 : C8
gap> StructureDescription( SerreFactorGroup( G ) );
"C2"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 4 generators>
gap> DimensionOfUnitaryGroup( kG );
12
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gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

We first consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 8)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 2 generators>
gap> AffineDimension( L0 );
4
gap> Display( L0 );
x1*x2+x2*x3+x1*x4+x3*x4+x2*x5+x4*x5+x1*x6+x3*x6+x5*x6+x2+x6,
x1^2+x2^2+x3^2+x4^2+x5^2+x6^2+x1+x3+x5

An ideal generated by the 2 entries of the above matrix
gap> IsLowerPartExtensionOfAffineSpaces( B0 );
true

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦:

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M0 );
0
gap> m0 := RadicalDecomposition( M0 );
[ <A principal torsion-free ideal given by a cyclic generator>,

<A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( m0, Display );
y1+1

An ideal generated by the entry of the above matrix
y1

An ideal generated by the entry of the above matrix

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( I0 );
0
gap> Dec0 := RadicalDecomposition( I0 );
[ <A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( Dec0, Display );
y1+1

An ideal generated by the entry of the above matrix
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Now we consider the non-principal block:
Example

gap> B := RealNonPrincipalBlocksOfGroupAlgebra( kG );
[ <two-sided ideal in <algebra-with-one of dimension 24 over GF(2)>,

(dimension 16)> ]
gap> B1 := B[1];
<two-sided ideal in <algebra-with-one of dimension 24 over GF(2)>,
(dimension 16)>

gap> IsSpecial( B1 );
true

Verify statement 1 for j = 1, i.e., U(B1,r
i
1/r

i+1
1 ) is connected for all i≥ 2:
Example

gap> L1 := DefiningIdealOfLowerPartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 4 generators>
gap> AffineDimension( L1 );
4
gap> Display( L1 );
x5,
x2+x4,
x7,
x6+x8

An ideal generated by the 4 entries of the above matrix

Verify statement 3, i.e., U(B1,r1/r
2
1) is connected:

Example
gap> M1 := DefiningIdealOfMiddlePartOfUnitaryGroup( B1 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M1 );
3
gap> Display( M1 );
y1

An ideal generated by the entry of the above matrix

Verify the formula for EG, i.e., EG ∼= π0(U(A,A/r))∼= ∏
n
j=1 π0(U(B j,B j/r j))∼=C2:

Example
gap> I1 := DefiningIdealOfUpperPartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 7 generators>
gap> AffineDimension( I1 );
1
gap> Dec1 := RadicalDecomposition( I1 );
[ <A torsion-free ideal given by 3 generators>,

<A torsion-free ideal given by 3 generators> ]
gap> Perform( Dec1, Display );
y4,
y2,
y1^2+y1*y3+y3^2+1

An ideal generated by the 3 entries of the above matrix
y3,
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y1,
y2^2+y2*y4+y4^2+1

An ideal generated by the 3 entries of the above matrix

2.10.3 C3 : Q8
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 24, 4 );; StructureDescription( G );; G;
C3 : Q8
gap> StructureDescription( SerreFactorGroup( G ) );
"C2 x C2"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 4 generators>
gap> DimensionOfUnitaryGroup( kG );
12
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

We first consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 8)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( L0 );
4
gap> Display( L0 );
x2+x4

An ideal generated by the entry of the above matrix

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2×C2 ∼= G/G◦:

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 2 generators>
gap> AffineDimension( M0 );
0
gap> m0 := RadicalDecomposition( M0 );
[ <A torsion-free ideal given by 2 generators>,

<A torsion-free ideal given by 2 generators>,
<A torsion-free ideal given by 2 generators>,
<A torsion-free ideal given by 2 generators> ]

gap> Perform( m0, Display );
y2,
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y1+1

An ideal generated by the 2 entries of the above matrix
y2+1,
y1+1

An ideal generated by the 2 entries of the above matrix
y2,
y1

An ideal generated by the 2 entries of the above matrix
y2+1,
y1

An ideal generated by the 2 entries of the above matrix

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( I0 );
0
gap> Dec0 := RadicalDecomposition( I0 );
[ <A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( Dec0, Display );
y1+1

An ideal generated by the entry of the above matrix

Now we consider the non-principal block:
Example

gap> B := RealNonPrincipalBlocksOfGroupAlgebra( kG );
[ <two-sided ideal in <algebra-with-one of dimension 24 over GF(2)>,

(dimension 16)> ]
gap> B1 := B[1];
<two-sided ideal in <algebra-with-one of dimension 24 over GF(2)>,
(dimension 16)>

gap> IsSpecial( B1 );
true

Verify statement 1 for j = 1, i.e., U(B1,r
i
1/r

i+1
1 ) is connected for all i≥ 2:
Example

gap> L1 := DefiningIdealOfLowerPartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 2 generators>
gap> AffineDimension( L1 );
6
gap> Display( L1 );
x5,
x7

An ideal generated by the 2 entries of the above matrix
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Verify statement 3, i.e., U(B1,r1/r
2
1) is connected:

Example
gap> M1 := DefiningIdealOfMiddlePartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 3 generators>
gap> AffineDimension( M1 );
1
gap> Display( M1 );
y4,
y2,
y1

An ideal generated by the 3 entries of the above matrix

Verify the formula for EG, i.e., EG ∼= π0(U(A,A/r))∼= ∏
n
j=1 π0(U(B j,B j/r j))∼=C2:

Example
gap> I1 := DefiningIdealOfUpperPartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 7 generators>
gap> AffineDimension( I1 );
1
gap> Dec1 := RadicalDecomposition( I1 );
[ <A torsion-free ideal given by 3 generators>,

<A torsion-free ideal given by 3 generators> ]
gap> Perform( Dec1, Display );
y4,
y2,
y1^2+y1*y3+y3^2+1

An ideal generated by the 3 entries of the above matrix
y3,
y1,
y2^2+y2*y4+y4^2+1

An ideal generated by the 3 entries of the above matrix

2.10.4 C2 x A4
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 24, 13 );; StructureDescription( G );; G;
C2 x A4
gap> StructureDescription( SerreFactorGroup( G ) );
"1"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 4 generators>
gap> DimensionOfUnitaryGroup( kG );
15
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

There are no non-principal blocks, so we only consider the principal block:



Computations of unitary groups in characteristic 2 23

Example
gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 24)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 6 generators>
gap> AffineDimension( L0 );
8
gap> Display( L0 );
x2+x7,
x4+x7+x9,
x6+x8+x9,
x2+x4+x6+x8,
x2+x4+x9,
x10+x12

An ideal generated by the 6 entries of the above matrix

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦:

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 3 generators>
gap> AffineDimension( M0 );
6
gap> Display( M0 );
y6+y7+y9,
y5+y7+y8+y9,
y3+y8

An ideal generated by the 3 entries of the above matrix

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 3 generators>
gap> AffineDimension( I0 );
1
gap> Dec0 := RadicalDecomposition( I0 );
[ <A torsion-free ideal given by 2 generators> ]
gap> AffineDegree( Dec0[1] );
2
gap> Perform( Dec0, Display );
y1+y2+y3+1,
y2^2+y2*y3+y3^2+y2+y3

An ideal generated by the 2 entries of the above matrix
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2.10.5 S4

The following computations show that ES4 is trivial.
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SymmetricGroup( 4 );; StructureDescription( G );; G;
S4
gap> StructureDescription( SerreFactorGroup( G ) );
"1"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 2 generators>
gap> DimensionOfUnitaryGroup( kG );
16
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

There are no non-principal blocks, so we only consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 2 generators>,
(dimension 24)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 3 generators>
gap> AffineDimension( L0 );
7
gap> Display( L0 );
x1+x3+x5,
x1+x3+x7+x9,
x9

An ideal generated by the 3 entries of the above matrix

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼= 1∼= G/G◦:

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 3 generators>
gap> AffineDimension( M0 );
6
gap> Display( M0 );
y5+y6,
y2+y6,
y1+y4+y6

An ideal generated by the 3 entries of the above matrix

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
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Example
gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 3 generators>
gap> AffineDimension( I0 );
3
gap> Dec0 := RadicalDecomposition( I0 );
[ <A torsion-free ideal given by 2 generators> ]
gap> AffineDegree( Dec0[1] );
2
gap> Perform( Dec0, Display );
y1+y2+y3+y4+y5+1,
y2^2+y2*y3+y2*y4+y3*y4+y2*y5+y3*y5+y4*y5+y5^2+y2+y5

An ideal generated by the 2 entries of the above matrix

2.10.6 SL(2,3)

The following computations show that ESL2(F3) is trivial. This is a group for which the connected
U(B0,r0/r

2
0) is of degree 4 > 1.

Example
gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 24, 3 );; StructureDescription( G );; G;
SL(2,3)
gap> StructureDescription( SerreFactorGroup( G ) );
"1"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 4 generators>
gap> DimensionOfUnitaryGroup( kG );
12
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

There are no non-principal blocks, so we only consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 24)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 9 generators>
gap> AffineDimension( L0 );
9
gap> AffineDegree( L0 );
2
gap> IsLowerPartExtensionOfAffineSpaces( B0 );
true
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Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼= 1∼= G/G◦ (however, we see that U(B0,r0/r

2
0) is of degree

4 > 1):
Example

gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 4 generators>
gap> RadicalDecomposition( M0 );
[ <A torsion-free ideal given by 4 generators> ]
gap> AffineDimension( M0 );
2
gap> AffineDegree( M0 );
4
gap> Display( M0 );
y4+y5+y6,
y2+y6,
y3^2+y5^2+y6^2+y3,
y1^2+y5^2+y1

An ideal generated by the 4 entries of the above matrix

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 3 generators>
gap> AffineDimension( I0 );
1
gap> Dec0 := RadicalDecomposition( I0 );
[ <A torsion-free ideal given by 2 generators> ]
gap> AffineDegree( Dec0[1] );
2
gap> Perform( Dec0, Display );
y1+y2+y3+1,
y2^2+y2*y3+y3^2+y2+y3

An ideal generated by the 2 entries of the above matrix

2.11 Order 48

2.11.1 A4 : C4
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 48, 30 );; StructureDescription( G );; G;
A4 : C4
gap> StructureDescription( SerreFactorGroup( G ) );
"C2"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 5 generators>
gap> DimensionOfUnitaryGroup( kG );
27
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );
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There are no non-principal blocks, so we only consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 5 generators>,
(dimension 48)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 16 generators>
gap> AffineDimension( L0 );
18
gap> AffineDegree( L0 );
10
gap> IsLowerPartExtensionOfAffineSpaces( B0 );
true

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦.

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 5 generators>
gap> AffineDimension( M0 );
8
gap> m0 := RadicalDecomposition( M0 );
[ <A torsion-free ideal given by 5 generators>,

<A torsion-free ideal given by 5 generators> ]
gap> Perform( m0, Display );
y6+y7+y9+y12,
y4,
y3+y5+y8,
y2+y7+y8+y12,
y1+y8+y9

An ideal generated by the 5 entries of the above matrix
y6+y7+y9+y12,
y4+1,
y3+y5+y8,
y2+y7+y8+y12,
y1+y8+y9

An ideal generated by the 5 entries of the above matrix

An example where U(B0,B0/r0) is not connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 12 generators>
gap> AffineDimension( I0 );
1
gap> Dec0 := RadicalDecomposition( I0 );
[ <A torsion-free ideal given by 4 generators>,

<A torsion-free ideal given by 4 generators> ]
gap> Perform( Dec0, Display );
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y3+y5,
y2+y4+y5+1,
y1+y5,
y4^2+y4*y5+y5^2+y4

An ideal generated by the 4 entries of the above matrix
y4,
y2,
y1+y3+y5+1,
y3^2+y3*y5+y5^2+y3+y5

An ideal generated by the 4 entries of the above matrix

Let IG be the augmentation ideal of G and a := IG2 ∩ r0. We now prove that U(B0,B0/a) has 4
components.

Example
gap> a := Intersection( AugmentationIdealPowers( kG ).2, RadicalOfAlgebra( B0 ) );
<algebra of dimension 42 over GF(2)>
gap> filt := InducedFiltration( k, [ B0, a ] );
<An ascending filtration with degrees [ -1 .. 0 ] and graded parts:

0: <A free left module of rank 6 on free generators>
-1: <A free left module of rank 42 on free generators>

of
<A free left module of rank 48 on free generators>>
gap> phi := DefiningMorphismOfUnitaryGroup( filt );
<A homomorphism of rings>
gap> I := IdealContainedInKernelViaEliminateOverBaseRing( phi );
<A torsion-free ideal given by 5 generators>
gap> Display( I );
y3*y4+y1*y5+y2*y6,
y1*y3+y2*y4+y2*y5+y4*y5+y1*y6+y3*y6,
y1*y2+y3*y5+y4*y6,
y2*y3+y1*y4+y5*y6,
y1^2+y2^2+y3^2+y4^2+y5^2+y6^2+1

An ideal generated by the 5 entries of the above matrix
gap> i := RadicalDecomposition( I );
[ <A torsion-free ideal given by 5 generators>,

<A torsion-free ideal given by 5 generators>,
<A torsion-free ideal given by 5 generators>,
<A torsion-free ideal given by 5 generators> ]

gap> Perform( i, Display );
y5+1,
y4+1,
y2+1,
y1+y3+y6,
y3^2+y3*y6+y6^2+1

An ideal generated by the 5 entries of the above matrix
y6+1,
y3+1,
y2+y4+y5,
y1+1,
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y4^2+y4*y5+y5^2+1

An ideal generated by the 5 entries of the above matrix
y5,
y4,
y2,
y1+y3+y6+1,
y3^2+y3*y6+y6^2+y3+y6

An ideal generated by the 5 entries of the above matrix
y6,
y3,
y2+y4+y5+1,
y1,
y4^2+y4*y5+y5^2+y4+y5

An ideal generated by the 5 entries of the above matrix
gap> pim1 := Pullback( phi, AMaximalIdealContaining( i[1] ) );
<A torsion-free ideal given by 6 generators>
gap> pim2 := Pullback( phi, AMaximalIdealContaining( i[2] ) );
<A torsion-free ideal given by 6 generators>
gap> pim3 := Pullback( phi, AMaximalIdealContaining( i[3] ) );
<A torsion-free ideal given by 6 generators>
gap> pim4 := Pullback( phi, AMaximalIdealContaining( i[4] ) );
<A torsion-free ideal given by 6 generators>

2.11.2 2.S4
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 48, 28 );; StructureDescription( G );; G;
C2 . S4 = SL(2,3) . C2
gap> StructureDescription( SerreFactorGroup( G ) );
"C2"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 5 generators>
gap> DimensionOfUnitaryGroup( kG );
24
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

There are no non-principal blocks, so we only consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 5 generators>,
(dimension 48)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 27 generators>
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gap> AffineDimension( L0 );
20
gap> AffineDegree( L0 );
18
gap> IsLowerPartExtensionOfAffineSpaces( B0 );
true

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦.

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 6 generators>
gap> AffineDimension( M0 );
3
gap> m0 := RadicalDecomposition( M0 );
[ <A torsion-free ideal given by 6 generators>,

<A torsion-free ideal given by 6 generators> ]
gap> Perform( m0, Display );
y4+y5,
y3+y6+y8,
y2+y6+y7,
y1+y5+y6+y8,
y7^2+y8^2+y9^2+y5+y6+y8,
y6^2+y9^2+y5+y8

An ideal generated by the 6 entries of the above matrix
y4+y5+1,
y3+y6+y8,
y2+y6+y7,
y1+y5+y6+y8+1,
y7^2+y8^2+y9^2+y5+y6+y8+1,
y6^2+y9^2+y5+y8+1

An ideal generated by the 6 entries of the above matrix

An example where U(B0,B0/r0) is not connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 12 generators>
gap> AffineDimension( I0 );
1
gap> Dec0 := RadicalDecomposition( I0 );
[ <A torsion-free ideal given by 4 generators>,

<A torsion-free ideal given by 4 generators> ]
gap> Perform( Dec0, Display );
y3+y5,
y2+y4+y5+1,
y1+y5,
y4^2+y4*y5+y5^2+y4

An ideal generated by the 4 entries of the above matrix
y4,
y2,



Computations of unitary groups in characteristic 2 31

y1+y3+y5+1,
y3^2+y3*y5+y5^2+y3+y5

An ideal generated by the 4 entries of the above matrix

Let IG be the augmentation ideal of G and a := IG2 ∩ r0. We now prove that U(B0,B0/a) has 4
components.

Example
gap> a := Intersection( AugmentationIdealPowers( kG ).2, RadicalOfAlgebra( B0 ) );
<algebra of dimension 42 over GF(2)>
gap> filt := InducedFiltration( k, [ B0, a ] );
<An ascending filtration with degrees [ -1 .. 0 ] and graded parts:

0: <A free left module of rank 6 on free generators>
-1: <A free left module of rank 42 on free generators>

of
<A free left module of rank 48 on free generators>>
gap> phi := DefiningMorphismOfUnitaryGroup( filt );
<A homomorphism of rings>
gap> I := IdealContainedInKernelViaEliminateOverBaseRing( phi );
<A torsion-free ideal given by 5 generators>
gap> Display( I );
y3*y4+y1*y5+y2*y6,
y1*y3+y2*y4+y2*y5+y4*y5+y1*y6+y3*y6,
y1*y2+y3*y5+y4*y6,
y2*y3+y1*y4+y5*y6,
y1^2+y2^2+y3^2+y4^2+y5^2+y6^2+1

An ideal generated by the 5 entries of the above matrix
gap> i := RadicalDecomposition( I );
[ <A torsion-free ideal given by 5 generators>,

<A torsion-free ideal given by 5 generators>,
<A torsion-free ideal given by 5 generators>,
<A torsion-free ideal given by 5 generators> ]

gap> Perform( i, Display );
y5+1,
y4+1,
y2+1,
y1+y3+y6,
y3^2+y3*y6+y6^2+1

An ideal generated by the 5 entries of the above matrix
y6+1,
y3+1,
y2+y4+y5,
y1+1,
y4^2+y4*y5+y5^2+1

An ideal generated by the 5 entries of the above matrix
y5,
y4,
y2,
y1+y3+y6+1,
y3^2+y3*y6+y6^2+y3+y6
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An ideal generated by the 5 entries of the above matrix
y6,
y3,
y2+y4+y5+1,
y1,
y4^2+y4*y5+y5^2+y4+y5

An ideal generated by the 5 entries of the above matrix
gap> pim1 := Pullback( phi, AMaximalIdealContaining( i[1] ) );
<A torsion-free ideal given by 6 generators>
gap> pim2 := Pullback( phi, AMaximalIdealContaining( i[2] ) );
<A torsion-free ideal given by 6 generators>
gap> pim3 := Pullback( phi, AMaximalIdealContaining( i[3] ) );
<A torsion-free ideal given by 6 generators>
gap> pim4 := Pullback( phi, AMaximalIdealContaining( i[4] ) );
<A torsion-free ideal given by 6 generators>

2.11.3 GL(2,3)

The following computations show that EGL(2,3) is trivial.
Example

gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 48, 29 );; StructureDescription( G );; G;
GL(2,3)
gap> StructureDescription( SerreFactorGroup( G ) );
"1"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 5 generators>
gap> DimensionOfUnitaryGroup( kG );
30
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

There are no non-principal blocks, so we only consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 5 generators>,
(dimension 48)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 17 generators>
gap> AffineDimension( L0 );
23
gap> AffineDegree( L0 );
16
gap> IsLowerPartExtensionOfAffineSpaces( B0 );
true
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Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦.

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 5 generators>
gap> AffineDimension( M0 );
4
gap> RadicalDecomposition( M0 );
[ <A torsion-free ideal given by 5 generators> ]
gap> Display( M0 );
y3+y6+y8,
y2+y6+y7,
y1+y4+y6+y8,
y7^2+y8^2+y9^2+y4+y6+y8,
y4^2+y5^2+y6^2+y9^2+y5+y8

An ideal generated by the 5 entries of the above matrix

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 3 generators>
gap> AffineDimension( I0 );
3
gap> Dec0 := RadicalDecomposition( I0 );
[ <A torsion-free ideal given by 2 generators> ]
gap> Display( Dec0[1] );
y1+y2+y3+y4+y5+1,
y2*y3+y3^2+y2*y4+y3*y4+y2*y5+y3*y5+y4*y5+y5^2+y3+y5

An ideal generated by the 2 entries of the above matrix

2.12 Order 60

2.12.1 C15 : C4

The faithful semi-direct product G := C15 oC4 is the unique group G of order less or equal to 60
having trivial center and nontrivial EG. It is one of 4 special groups of order 60. The other nonfaithful
semi-direct product C15 oC4 is also a special group.

Example
gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 60, 7 );; StructureDescription( G );; G;
C15 : C4
gap> StructureDescription( SerreFactorGroup( G ) );
"C2"
gap> IsTrivial( Center( G ) );
true
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 4 generators>
gap> DimensionOfUnitaryGroup( kG );
32
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gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

We first consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 4 generators>,
(dimension 4)>

Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A zero ideal>
gap> AffineDimension( L0 );
2

Verify statement 2, i.e., π0(U(B0,r0/r
2
0))
∼=C2 ∼= G/G◦:

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M0 );
0
gap> m0 := RadicalDecomposition( M0 );
[ <A principal torsion-free ideal given by a cyclic generator>,

<A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( m0, Display );
y1+1

An ideal generated by the entry of the above matrix
y1

An ideal generated by the entry of the above matrix

Verify statement 2.(b), i.e., U(B0,B0/r0) is connected:
Example

gap> I0 := DefiningIdealOfUpperPartOfUnitaryGroup( B0 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( I0 );
0
gap> Dec0 := RadicalDecomposition( I0 );
[ <A principal torsion-free ideal given by a cyclic generator> ]
gap> Perform( Dec0, Display );
y1+1

An ideal generated by the entry of the above matrix

Now we consider the non-principal block B1:
Example

gap> B := RealNonPrincipalBlocksOfGroupAlgebra( kG );
[ <two-sided ideal in <algebra-with-one of dimension 60 over GF(2)>,
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(dimension 8)>,
<two-sided ideal in <algebra-with-one of dimension 60 over GF(2)>,
(dimension 16)> ]

gap> B1 := B[1];
<two-sided ideal in <algebra-with-one of dimension 60 over GF(2)>,
(dimension 8)>

gap> IsSpecial( B1 );
true

Verify statement 1 for j = 1, i.e., U(B1,r
i
1/r

i+1
1 ) is connected for all i≥ 2:
Example

gap> DefiningIdealOfLowerPartOfUnitaryGroup( B1 );
<A zero vector subspace>

Verify statement 3, i.e., U(B1,r1/r
2
1) is connected:

Example
gap> M1 := DefiningIdealOfMiddlePartOfUnitaryGroup( B1 );
<A principal torsion-free ideal given by a cyclic generator>
gap> AffineDimension( M1 );
3
gap> Display( M1 );
y1

An ideal generated by the entry of the above matrix

Verify the formula for EG, i.e., EG ∼= π0(U(A,A/r))∼= ∏
n
j=1 π0(U(B j,B j/r j))∼=C2:

Example
gap> I1 := DefiningIdealOfUpperPartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 7 generators>
gap> AffineDimension( I1 );
1
gap> Dec1 := RadicalDecomposition( I1 );
[ <A torsion-free ideal given by 3 generators>,

<A torsion-free ideal given by 3 generators> ]
gap> Perform( Dec1, Display );
y4,
y2,
y1^2+y1*y3+y3^2+1

An ideal generated by the 3 entries of the above matrix
y3,
y1,
y2^2+y2*y4+y4^2+1

An ideal generated by the 3 entries of the above matrix

Now we consider the non-principal block B2:
Example

gap> B2 := B[2];
<two-sided ideal in <algebra-with-one of dimension 60 over GF(2)>,
(dimension 16)>

gap> IsSpecial( B2 );
false
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Verify statement 1 for j = 2, i.e., U(B2,r
i
2/r

i+1
2 ) is connected for all i≥ 2:
Example

gap> DefiningIdealOfLowerPartOfUnitaryGroup( B2 );
<A zero vector subspace>

Verify statement 3, i.e., U(B2,r2/r
2
2) is connected:

Example
gap> DefiningIdealOfMiddlePartOfUnitaryGroup( B2 );
<A zero vector subspace>

Verify the formula for EG, i.e., EG ∼= π0(U(A,A/r))∼= ∏
n
j=1 π0(U(B j,B j/r j))∼=C2:

Example
gap> I2 := DefiningIdealOfUpperPartOfUnitaryGroup( B2 );
<A torsion-free ideal given by 24 generators>
gap> AffineDimension( I2 );
10

The remaining computation was done using MAGMA for the radical decomposition. It took MAGMA
2.20-9 about 47 minutes and 300MB to compute the decomposition.

Example
gap> Dec2 := RadicalDecomposition( I2 );
[ <A torsion-free ideal given by 24 generators> ]

2.12.2 A5

The following computations show that EA5 is trivial. Serre showed that for A = F2A5 with radical r
the factor group U(A,A/r) is connected. The 16-dimensional non-principal block B1 is semi-simple.
Hence, we only need to show that for the 44-dimensional principal block B0 with radical r0 the sub-
group U(B0,r

2
0) (lower part) and the subfactor group U(B0,r0/r

2
0) (middle part) are connected:

Example
gap> LoadPackage( "Blocks" );
true
gap> G := AlternatingGroup( 5 );; StructureDescription( G );; G;
A5
gap> StructureDescription( SerreFactorGroup( G ) );
"1"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 2 generators>
gap> DimensionOfUnitaryGroup( kG );
37
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

As we mentioned above, we only consider the principal block:
Example

gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 2 generators>,
(dimension 44)>
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Verify statement 1 for j = 0, i.e., U(B0,r
i
0/r

i+1
0 ) is connected for all i≥ 2:
Example

gap> L0 := DefiningIdealOfLowerPartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 20 generators>
gap> AffineDimension( L0 );
17
gap> AffineDegree( L0 );
2
gap> IsLowerPartExtensionOfAffineSpaces( B0 );
true

The defininig ideal of the subgroup U(B0,r0) is generated by 25 elements in 35 indeterminates. To
compute the defining ideal M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 ) of the
middle part U(B0,r0/r

2
0) we need to eliminate (the last) 27 indeterminates. Verify statement 2, i.e.,

π0(U(B0,r0/r
2
0))
∼= 1∼= G/G◦.

Example
gap> M0 := DefiningIdealOfMiddlePartOfUnitaryGroup( B0 );
<A torsion-free ideal given by 4 generators>
gap> AffineDimension( M0 );
4
gap> Display( M0 );
y5+y6+y8,
y4,
y2+y3+y7,
y1+y3+y6+y7+y8

An ideal generated by the 4 entries of the above matrix

2.13 Order 120

2.13.1 2.A5

The following computations only deal with the non-principal 2-block B1 of SL(2,5) and prove that
π0(U(B1))∼= π0(U(B1,B1/r1)). J.-P. Serre told me that he now has an a priori proof that π0(U(B1))∼=
C2.

Example
gap> LoadPackage( "Blocks" );
true
gap> G := SmallGroup( 120, 5 );; StructureDescription( G );; G;
SL(2,5)
gap> StructureDescription( SerreFactorGroup( G ) );
"1"
gap> kG := GroupRingOverInvolutionSplittingField( 2, G );
<algebra-with-one over GF(2), with 2 generators>
gap> DimensionOfUnitaryGroup( kG );
60
gap> k := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> SetCoefficientsRingForPolynomialAlgebra( kG, k );

We first consider the principal block:
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Example
gap> B0 := PrincipalBlock( kG );
<two-sided ideal in <algebra-with-one over GF(2), with 2 generators>,
(dimension 88)>

Now we consider the non-principal block B1:
Example

gap> e := CentralNonPrincipalIdempotentsOfGroupAlgebra( kG );;
gap> B1 := BlockOfIdempotent( e[1] );
<two-sided ideal in <algebra-with-one over GF(2), with 2 generators>,
(1 generators)>

gap> Dimension( B1 );
32

Verify statement 1 for j = 1, i.e., U(B1,r
i
1/r

i+1
1 ) is connected for all i≥ 2:
Example

gap> DefiningIdealOfLowerPartOfUnitaryGroup( B1 );
<A zero vector subspace>

The following computation took GAP about 22min on a modern computer. Verify statement 3, i.e.,
U(B1,r1/r

2
1) is connected:

Example
gap> M1 := DefiningIdealOfMiddlePartOfUnitaryGroup( B1 );
<A torsion-free ideal given by 6 generators>
gap> AffineDimension( M1 );
10
gap> Display( M1 );
y13+y14+y15,
y9+y12+y16,
y7+y8+y14,
y6,
y4,
y1

An ideal generated by the 6 entries of the above matrix



Chapter 3

Appendix

3.1 Summary of changes between successive versions

This section lists a summary of changes made to this document from version to version in reversed
chronological order. The current version is indicated by the date on the front page. This section will
disappear when this document reaches a final form.

Changes between:

• 18.02 – 20.07.2015

– Updated output as produced by Blocks v2015.07.20.

• 18.01.2014 – 08.02.2015

– Updated output as produced by Singular 4.0.1.

– Restructured chapters.

– Explicitly check the property IsSpecial for table blocks.

– Use Blocks v2015.01.13 and update timings (it replaced KernelSubobject by the faster
IdealContainedInKernelViaEliminateOverBaseRing).

– Turn the Log-sections into testable Example-sections as computations are becoming more
feasible.

– Updated examples and fixed typos.

– Corrected and enhanced some comments, e.g., ESL(2,3) is now proven trivial.

– Added S3 to the new Section 2.7.

– Added the three groups A4 oC4, 2.S4, and GL(2,3) to the new Section 2.11.

– Used MAGMA to compute the missing radical decomposition for C15 oC4 in Subsection
2.12.1.

• 31.12 – 18.01.2014

– Updated timings of computations.

• 22.11 – 31.12.2013

– Fixed a typo in Subsection 2.10.3: C4 should be C2×C2.

39
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– Use GroupRingOverInvolutionSplittingField( 2 , G ) and updated output to comply
with new version of the package Blocks (v2013.12.27).

– Added the faithful semi-direct product C15 oC4 as the new Subsection 2.12.1.

• 13.11 – 22.11.2013

– Update output to comply with new version of the package Blocks (v2013.11.08).

– Updated BibTeX entry for [Ser05].

– Updated URL of homalg-online.

• 04.11 – 13.11.2013

– Added C2×A4 as the new Subsection 2.10.4.

– Added a link to the homalg online server a the end of the Introduction (Chapter 1), where
all computations performed here can be reproduced an verified.

– Added a preliminary treatment of SL(2,5) = 2.A5 as the new Subsection 2.13.1.

– Cite [Ser14] in the Introduction (Chapter 1).

• 24.10 – 04.11.2013

– Added reference to the software in the Introduction (Chapter 1.1).

– Modified the notation ϕJ to ϕA/J to be compatible with the “double” index notation ϕI/J
in Section 2.1.

– Defined what I call upper, middle, and lower part of a unitary group in Section 2.1.

– Described the algorithm to compute the image in Section 2.2.

– Added reference to [Ser05] in Section 2.3.

– Added the discussion of Bovdi’s and Rosa’s paper [BR00] as the new Section 2.4. This
was the content of my email on the 26th of August (fixed reported typo).

– I mistakenly programmed DefiningIdealOfLowerPartOfUnitaryGroup in the pack-
age Blocks to compute the defining ideal of U(B,r2/r3) instead of U(B,r2). Once I
added the rule that the sum of dimensions of all involved subfactors should add up to
the DimensionOfUnitaryGroup( kG ) the computer objected. This is now fixed. (In the
computer algebra software we develop we created tools to combine algorithms with theo-
retical results. We refer to the latter as zero-cost algorithms or O(1)-algorithms [BLH12]).

– In my email on the 26th of August I wrote that for G = C4 oC3 the degree of the factor
group U(kG,kG/r) is 8. There I was mistakenly referring to the non-reduced structure.
The correct degree of U(kG,kG/r) is 4 (see the end of Subsection 2.8.1).

– Added the non-faithful semi-direct product C5 oC4 to the new Section 2.9.

– Added S4 as the new Subsection 2.10.5.

– Added SL(2,3) = SL2(F3) as the new Subsection 2.10.6. The algorithms did not yet
succeed to compute ESL2(F3), however, this is a group for which the connected subfactor
U(B0,r0/r

2
0) is of degree 2 > 1.

– Added A5 to the new Section 2.12.
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3.2 About this document

The printed output of the computations in all examples displayed in this document has been computed
once and is now hard-coded in the example files (after being checked for plausibility). This is done
on purpose to guarantee that future changes to the program cannot introduce mistakes which alter the
results. In particular, the computer is able to check if the printed output coincides with the recomputed
one, which is among the few possible automatic integrity checks computer algebra can currently
provide.

The GAP4 programming language (like all other programming languages in computer algebra
which I am aware of) does not have the linguistic capabilities of a proof assistant (e.g., Coq). A
proof assistant enables the programmer to formulate assumptions about his programs (in form of meta
statements) and provides him with tools to perform correctness proofs of these assumptions. Such a
capability is still missing in computer algebra systems for several reasons. All proof assistants rely
on a strict functional programming paradigm. In fact, a proof assistant can indeed serve as a com-
puter algebra system. However, in my opinion, the functional paradigm is extremely impractical for
everyday computer algebra, which rather relies on other programming paradigms, e.g., those allowing
side effects. When Donald Knuth was asked about functional programming during his Turing Lecture
in Glasgow he replied: “With one or even two hands tied behind your back it’s hard to do anything
dangerous.” (http://homepages.cs.ncl.ac.uk/m.j.bell1/blog/?p=49). Much more research
and human resources are needed to bring proof assistants to everyday computer algebra.

The computer algebra system Singular [DGPS14] is used as an oracle for Gröbner basis computa-
tions, which are the most expensive computational tasks we have to perform. All given timings above
mainly depend on the implemented algorithms in the current version of the package Blocks (see date
on the title page), and, hence, also on the current versions of the yet single threaded computer algebra
systems GAP4 and Singular.

This human readable document has been generated out of several GAP readable files by the pro-
cedure AutoDocWorksheet in the GAPDoc-based package AutoDoc. In particular, the code used to
produce this document can be used to check the integrity of the used software.

http://homepages.cs.ncl.ac.uk/m.j.bell1/blog/?p=49
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