
homalg: First steps to an abstract package for homological

algebra

Mohamed Barakat Daniel Robertz

Abstract

Homological algebra is a natural extension of the theory of modules over rings. The
category of modules and their homomorphisms is replaced by the category of chain
complexes and their chain maps. A module is represented by any of its resolutions.
The module is then recovered as the only non-trivial homology of the resolution. The
notions of derived functors and their homologies, connecting homomorphism and the
resulting long exact homology sequences play a central role in homological algebra.

The MAPLE-package homalg [1, 2] provides a way to deal with these powerful no-
tions. The package is abstract in the sense that it is independent of any specific ring
arithmetic. If one specifies a ring, not necessarily commutative, in which one can solve
the ideal membership problem and compute syzygies, the above homological algebra
constructions over that ring become accessible using homalg.

As the name of this package suggests, our intention has been to make as much as
possible of the basic homological machinery available in a computer algebra system
without the need to specify the ring of operators from the beginning.

Introduction

The basic objects of homalg are finitely presented left modules over rings in which the ideal
membership problem is algorithmically solvable and syzygies are effectively computable. We
call such rings computable. homalg implements the homological constructions for modules
over such rings, whereas the ring arithmetic has be to provided by a ring-specific package.
The following ring-specific packages have successfully been used with homalg: Involutive

and Janet [3], JanetOre, OreModules [4]. PIR is one more tiny package, that makes
MAPLE’s builtin facilities for dealing with principal ideal rings such as the ring of integers,
univariate polynomial rings over fields and all their residue class rings available to homalg.
PIR uses the Smith normal form to bring modules to a standard form.

The central objects in homalg are functors. Functors map on the one hand objects of a
source category to objects of a target category, and on the other hand morphisms between
two objects in the source category to morphisms between their images in the target category
in a compatible way. The two most important functors are the Hom-functor and the tensor
product functor ⊗ and their derived functors, the definition of which will be reproduced
below.

1

Figure 1: A module of homomorphisms between two modules over D = Q[x, y, z] with
Involutive

[[[1, 0, 0] =

"

0 y 0

0 −y 0

#

, [0, 1, 0] =

"

1 0 0

0 1 0

#

, [0, 0, 1] =

"

0 0 −y

0 0 x

#

],

[[x − y, 0, 0], [y, xy, 0], [0, 0, z3]],

“Presentation”,

generators 3 + 8 s + 14 s2 + s3
“

14
(1−s)

+ 6
(1−s)2

”

,

relations [14, 6, 0]]

Hilbert-series

Cartan-characters

A major effort in the implementation was to find the suitable scheme for realizing the
functor part on objects in order to have a unified way in extracting the part of the functor on
morphisms. Composition and derivation of functors in homalg rely exclusively on this and
define again functors. I.e. extracting the morphism part of composed or derived functors
is done in the same unified way as for all functors. Hence, using the two basic operations
of composing and deriving functors, the user can without effort add new functors to those
already existing in homalg.

Given a (covariant) functor F the i-th left derivation of F is as usual denoted by LiF .
A short exact sequence 0 → M ′ → M → M ′′ → 0 of modules then gives rise to a long exact
sequence connecting LiF (M ′) → LiF (M) → LiF (M ′′) and Li+1F (M ′) → Li+1F (M) →

Li+1F (M ′′) for all i ≥ 0. These so-called connecting homomorphisms are implemented in
homalg.

1 Finitely presented modules

homalg can only deal with finitely presented modules. A finitely presented D-module M is
a quotient of a free module of finite rank D1×l0 by a finitely generated submodule D1×l1A =
im(.A), where A ∈ Dl1×l0 :

M = D1×l0/D1×l1A = coker(.A).

As usual a presentation is given by generators and relations. A presentation of a module
in homalg is a list containing as first entry the list of generators and as second entry the
list of relations. The third entry is a string delimiter to optically indicate the end of the
presentation. This string, unless changed by the user, defaults to "Presentation". The

2

remaining entries provide extra information about the presented module, e.g. its Hilbert-
series. This extra information can only be provided by the ring-specific package.

In the list of generators the concrete generators are numbered by abstract generators
being the l0 standard basis vectors of the underlying free module D1×l0 . The list of relations
simply contains the rows of the matrix A. An example is given in Figure 1.

2 An Example

Here we demonstrate on a simple example some main procedures in homalg. We start with the principal
ideal ring D := Z/28Z and the short exact sequence of modules

(0→M ′

→M →M ′′

→ 0) = (0→ Z/22
Z→ Z/25

Z→ Z/23
Z→ 0).

The functor we want to derive is the composed functor

F := Hom(Hom(−, K), L) = Hom(Hom(−, Z/27
Z), Z/24

Z)

. We compute the long exact sequence of the left derived functors Li F :

> restart;

> with(PIR): with(homalg):

> RPP:=‘PIR/homalg‘: ‘homalg/default‘:=RPP;

homalg/default := PIR/homalg

> var:=[[],[2^8]]: Pvar(var);

[“Z”, 256]
> M:=Cokernel([2^5],var); alpha2:=matrix([[1]]);
> _M:=Cokernel([2^3],var);

M := [[1 = 1], [32], “Presentation”, [32], 0]

α2 :=
ˆ

1
˜

M := [[1 = 1], [8], “Presentation”, [8], 0]

> M_:=Kernel(M,alpha2,_M,var); alpha1:=KernelEmb(M,alpha2,_M,var);

M := [[1 = 8], [4], “Presentation”, [4], 0]

α1 :=
ˆ

8
˜

> IsShortExactSeq(M_,alpha1,M,alpha2,_M,var);

true

> K:=Cokernel([2^7],var); L:=Cokernel([2^4],var);

K := [[1 = 1], [128], “Presentation”, [128], 0]

L := [[1 = 1], [16], “Presentation”, [16], 0]

> GlobalDim(var); q:=4;

∞

q := 4

> seqs:=ResolveShortExactSeq(q,M_,alpha1,M,alpha2,_M,var,"TRUNCATE"):

> Seqs:=HomHomOnSeqs(K,L,seqs,var):

> LEHS:=LongExactHomologySeq(Seqs,var):

> map(a->LHomHomMap(a,M_,alpha1,M,K,L,var),[$0..q]);
> map(a->LHomHomMap(a,M,alpha2,_M,K,L,var),[$0..q]);

3

[
ˆ

8
˜

,
ˆ

4
˜

,
ˆ

4
˜

,
ˆ

4
˜

,
ˆ

4
˜

]

[
ˆ

1
˜

,
ˆ

2
˜

,
ˆ

2
˜

,
ˆ

2
˜

,
ˆ

2
˜

]

We obtain the long exact sequence of derived functors:

0← Z/8Z
(7)
← Z/16Z

(8)
← Z/4Z

(2)
← Z/8Z

(6)
← Z/8Z

(4)
← Z/4Z

(2)
← Z/8Z

(6)
← Z/8Z

(4)
← · · · periodic

> lehs:=LEHS2lehs(LEHS);

lehs := [[[1 =
ˆ

1
˜

], [8], “Presentation”, [8], 0],
ˆ

7
˜

,

[[1 =

»

7
249

–

], [16], “Presentation”, [16], 0],
ˆ

8
˜

,

[[1 =
ˆ

1
˜

], [4], “Presentation”, [4], 0],
ˆ

2
˜

, [[1 =
ˆ

2
˜

], [8], “Presentation”, [8], 0],

ˆ

6
˜

, [[1 =

»

0
1

–

], [8], “Presentation”, [8], 0],
ˆ

4
˜

,

[[1 =
ˆ

4
˜

], [4], “Presentation”, [4], 0],
ˆ

2
˜

, [[1 =
ˆ

1
˜

], [8], “Presentation”, [8], 0],

ˆ

6
˜

, [[1 =

»

6
250

–

], [8], “Presentation”, [8], 0],
ˆ

4
˜

,

[[1 =
ˆ

1
˜

], [4], “Presentation”, [4], 0],
ˆ

2
˜

, [[1 =
ˆ

2
˜

], [8], “Presentation”, [8], 0],

ˆ

6
˜

, [[1 =

»

0
1

–

], [8], “Presentation”, [8], 0],
ˆ

4
˜

,

[[1 =
ˆ

4
˜

], [4], “Presentation”, [4], 0],
ˆ

2
˜

, [[1 =
ˆ

1
˜

], [16], “Presentation”, [16], 0],
»

14
0

–

, [[[1, 0] =

»

254
2

–

, [0, 1] =

»

0
15

–

], [[8, 0], [0, 16]], “Presentation”, [8, 16], 0],
ˆ

0 1
˜

,

[[1 =
ˆ

1
˜

], [16], “Presentation”, [16], 0]]

> IsExactSeq(lehs,var,"VERBOSE");

true

References

[1] M. Barakat, D. Robertz, Computing invariants of multidimensional linear systems on

an abstract homological level, to appear, proceedings MTNS 2006, Japan.

[2] M. Barakat, D. Robertz, homalg: An abstract package for homological algebra, in prep.

[3] Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, D. Robertz, The MAPLE Package

“Janet”: I. Polynomial Systems. II. Linear Partial Differential Equations. Proc. 6th
Int. Workshop on Computer Algebra in Scientific Computing, Passau, 2003. Cf. also
http://wwwb.math.rwth-aachen.de/Janet.

[4] F. Chyzak, A. Quadrat, D. Robertz, OreModules project,
http://wwwb.math.rwth-aachen.de/OreModules.

[5] P. J. Hilton, U. Stammbach, A Course in Homological Algebra, second edition, Springer,
1997.

4

