
Jets. A Maple-Package for Formal Differential

Geometry

Mohamed Barakat

Lehrstuhl B für Mathematik, RWTH-Aachen, Templergraben 64
D-52062 Aachen, Germany

mohamed.barakat@post.rwth-aachen.de

http://wwwb.math.rwth-aachen.de

Abstract. The Maple-package jets was first designed to be an extension of the package
desolv. In the current stage it became an independent package going beyond symmetries
to handle different aspects of formal differential geometry, including some important
parts of the variational bicomplex. We demonstrate this by computing the set of all
Hamiltonian structures of a order at most 3, which are compatible with Dx. This set
includes among others the famous KdV-operator Dxxx + 2

3
uDx + 1

3
ux.

1 Introduction

The Maple-package jets, originally an extension of the package desolv1 adding
to it the facility of computing generalized symmetries of differential equations, is
at the current stage an independent package going beyond symmetries to handle
different aspects of what I. M. Gel’fand, in his 1970 address to the International
Congress in Nice, called “formal differential geometry”. Important parts of the
variational bicomplex, as playing a crucial role in the formal theory, are imple-
mented in jets. Most of the implementation of the variational aspects in jets,
such as variational symmetries, higher Euler operators, homotopy operators and
conservation laws, was done by Gehrt Hartjen as part of his diploma the-
sis [Har]. As dual to functional forms and the vertical derivative also functional
multi-vectors and the Nijenhuis-Schouten bracket are also implemented in jets,
enabling one to handle Hamiltonian systems of evolution equations and nonlinear
integrable systems. The package adds to Maple the important feature of deal-
ing with jet calculus, a thing which is still missing in modern computer algebra
systems. Almost every formula appearing in [Olv] can now be computed using
jets.

2 Hamiltonian Structures and the Nijenhuis-Schouten
Bracket

As mentioned in the abstract, the aim of this paper is to demonstrate a non-
trivial application of the package jets by computing the set of all Hamiltonian

1 desolv was written by Khai Vu and Colin McIntosh. jets still uses desolv to solve linear PDE
systems.

2 Mohamed Barakat

structures of a order at most 3, which are compatible with Dx. This is done in
section 3. To this end we define the notion of functional multi-vectors, Hamilto-
nian structures and the Nijenhuis-Schouten bracket. The notions used in sequel
are standard and can be found in [Olv]. Further details are found in [Bar].

Let E → M be a fibred manifold in p independent variables (xi) = (x1, . . . , xp)
and q dependent variables (uα) = (u1, . . . , uq). By J∞(E) → M we denote the
infinite jet bundle having the jet variables (xi, uα

J) as coordinates, where J is an
arbitrary multi-index. By A we denote the space of differential expressions over
E , i.e. smooth real-valued functions of finitely many arbitrary jet variables. By
V1 we denote the space of evolutionary vector fields, or equivalently the space of
characteristics over a jet bundle. This space can be identified with the Cartesian
power Aq. Further we define locally F0 := A/Div(Ap) and call it the space of
functionals2. By F1 we denote the F0-dual space of V1. We can also identify it
with Aq. Further let Fn (resp. Vn) denote the space of functional n-forms (resp.
n-vectors).

We first note the following two basic formulas. The first one relates the pro-
longation of an evolutionary vector field and the Fréchet derivative

pr vQ(L) = DLQ, (1)

where Q = (Q1, . . . , Qq)tr is a characteristic, vQ = Qα ∂
∂uα and evolutionary vector

field, pr vQ = DJQα ∂
∂uα

J
(prolongation formula) and DL = (∂L

∂u1

J

DJ , . . . , ∂L
∂u

q
J

DJ)

(Fréchet derivative). The proof follows immediately from the prolongation for-
mula and the definition of the Fréchet derivative. The second formula is the
standard Leibniz rule

pr v(L · P) = pr vL · P + L · pr vP (2)

where v is a generalized vector field and L, P are arbitrary differential expression.
We still need the following lemma.

Lemma 1. For a differential operator D = P JDJ (P J ∈ A) and differential
function T ∈ A, we have the following Leibniz rule:

pr vQ(DT) = pr vQ(D)T + Dpr vQ(T), (3)

or equivalently by (1)

DDT (Q) = pr vQ(D)T + DDTQ. (4)

Proof. [Olv], Formula (5.38). �

Definition 1 (Adjoint operator). The formal adjoint operator of a matrix
differential operator D = (P J

αβDJ) is defined by

D∗ = ((−1)|J |DJP J
βα).

2
DivP = DiP

i, where P = (P 1, . . . , P p) and Di = Dxi

Computer Algebra in Scientific Computing 3

Definition 2 (Euler operator). For L ∈ A the operator

E(L) := D∗
L(1) (5)

is called the Euler operator.

Lemma 2 ([Olv], Formula (4.15)). A Lagrangian L ∈ A transforms infinites-
imally according to the rule

L
v
L = pr vL + LDiv(ξ), (6)

where v = ξi ∂
∂xi + ηα ∂

∂uα is a generalized vector field3.

Proof. [Olv], Theorem 4.12. �

Corollary 1 (Lie derivative of functionals). For a Lagrangian L viewed as
an element of F0, i.e. as a functional 0-form, the Lie derivative L

v
satisfies

L
v
L = pr vQL = E(L) · Q. (7)

Proof. The following are identities between functionals. For a generalized
vector field v with characteristic Q

L
v
L

(6)
= pr vL + LDiv(ξ)

= pr vQL + ξiDiL + LDiξ
i

= pr vQL + Div(Lξ)

= pr vQL
(1)
= 1 · DL(Q)

= D∗
L(1) · Q

(5)
= E(L) · Q

�

Definition 3 (Lie derivative of vector fields). Let v be a generalized vector
field and R a characteristic, i.e. R ∈ V1. Define the Lie derivative of R with
respect to v by

L
v
(R) = pr vQR − pr vRQ

(1)
= pr vQR − DQR, (8)

where Q is the characteristic of v.

3 [Olv] proves this for point vector fields only. The above Lie derivative coincides with the notion of
projected Lie derivative L

♯
v

introduced in [And], Chapter 3.

4 Mohamed Barakat

Proposition 1 (Lie derivative of functional 1-forms). For the Lie derivative
of a source form ∆ ∈ F1 the following two statements are equivalent:

(i) ∆ transforms infinitesimally according to

L
vQ

∆ = pr vQ∆ + D∗
Q∆. (9)

(ii) L
vQ

satisfies the following Leibniz rule for an arbitrary characteristic R

L
vQ

(∆ · R) = L
vQ

∆ · R + ∆ · L
vQ

R. (10)

This is an identity of functionals, i.e. the left and right hand sides are equal
up to local divergence.

Proof. Both directions follow from the following equalities:

E(L
vQ

(∆ · R)) − E(∆ · L
vQ

R)

(7)
= E(pr vQ(∆ · R)) − E(∆ · L

vQ
R)

(2),(8)
= E(pr vQ∆ · R + ∆ · pr vQR) − E(∆ · (pr vQR − DQR))

= E(pr vQ∆ · R + ∆ · DQR)

= E((pr vQ∆ + D∗
Q∆) · R).

�

Remark 1. The identity of functionals

L
vQ

∆ · R = pr vQ∆ · R + ∆ · pr vRQ, (11)

which is part of the proof, appears as formula (4.2) in [GDo2].

Lemma 3. The following identity holds for a general K : F1 → V1

(pr v·(K)∆)∗Σ = (pr v·(K
∗)Σ)∗∆ (12)

Proof. For an arbitrary characteristic S

E(S · ((pr v·(K)∆)∗Σ − (pr v·(K
∗)Σ)∗∆))

= E(pr vS(K)∆ · Σ − pr vS(K∗)Σ · ∆)

= E(pr vS(K)∆ · Σ − Σ · pr vS(K)∆)

= 0.

�

Computer Algebra in Scientific Computing 5

Definition 4 (Nijenhuis-Schouten bracket). For D, E ∈ V2 the Nijenhuis-
Schouten bracket [D, E] : F1 ×F1 ×F1 → F0 is defined as follows:

[D, E](∆1, ∆2, ∆3) := LD∆1
∆2 · E∆3 + LE∆1

∆2 · D∆3 + (cycle), (13)

where the word (cycle) means summation over all cyclic permutations of the in-
dices 1, 2, 3. D and E are viewed as differential operators from F1 into V1.

This definition is a generalisation of the classical Nijenhuis-Schouten bracket
from differential geometry, which is one of its advantages. It appears in [GDo2],
Formula (3.3). Nevertheless there are two major drawbacks of this definition. The
first one is that the right hand side is a functional, so it has no normal form. This
means that checking the vanishing of the bracket or extracting conditions for its
vanishing is not a direct procedure. The second one is that one needs more than
total differentials of the ∆i’s, meaning that we cannot compute with general ∆i’s,
complicating the check of vanishing of the bracket. Besides, from this definition
we do not see that the bracket of two 2-vectors is a (3, 0)-tensor, even a 3-vector.
In the following we want to make use of the freedom of adding divergences to
circumvent these drawbacks. The following formula cures both drawbacks.

Proposition 2 (Nijenhuis-Schouten bracket). For D, E ∈ V2 the following
formula is an equivalent definition of the Nijenhuis-Schouten bracket [D, E]

[D, E](∆) = pr vD∆(E) − pr vD·(E)∆ + (pr vD·(E)∆)∗ +

pr vE∆(D) − pr vE·(D)∆ + (pr vE·(D)∆)∗. (14)

Proof.

E([D, E](∆1, ∆2, ∆3))

= E(LD∆1
∆2 · E∆3) + E(LE∆1

∆2 · D∆3) + (cycle)
(11)
= E(pr vD∆1

∆2 · E∆3) + E(∆2 · pr vE∆3
(D∆1)) +

E(pr vE∆1
∆2 · D∆3) + E(∆2 · pr vD∆3

(E∆1)) +

(cycle)
(3)
= E(pr vD∆1

∆2 · E∆3) + E(∆2 · pr vE∆3
(D)∆1) + E(∆2 · Dpr vE∆3

∆1) +

E(pr vE∆1
∆2 · D∆3) + E(∆2 · pr vD∆3

(E)∆1) + E(∆2 · Epr vD∆3
∆1) +

(cycle)

= E(pr vD∆1
∆2 · E∆3) + E(∆2 · pr vE∆3

(D)∆1) − E(D∆2 · pr vE∆3
∆1) +

E(pr vE∆1
∆2 · D∆3) + E(∆2 · pr vD∆3

(E)∆1) − E(E∆2 · pr vD∆3
∆1) +

(cycle)

= E(pr vD∆1
∆2 · E∆3) + E(∆2 · pr vE∆3

(D)∆1) − E(pr vE∆3
∆1 · D∆2) +

E(pr vE∆1
∆2 · D∆3) + E(∆2 · pr vD∆3

(E)∆1) − E(pr vD∆3
∆1 · E∆2) +

6 Mohamed Barakat

(cycle)
(cycle)
= E(∆3 · pr vD∆1

(E)∆2 + ∆1 · pr vD∆2
(E)∆3 + ∆2 · pr vD∆3

(E)∆1

+∆3 · pr vE∆1
(D)∆2 + ∆1 · pr vE∆2

(D)∆3 + ∆2 · pr vE∆3
(D)∆1)

= E(∆3 · pr vD∆1
(E)∆2 − pr vD∆2

(E)∆1 · ∆3 + (pr vD·(E)∆1)
∗∆2 · ∆3

+∆3 · pr vE∆1
(D)∆2 − pr vE∆2

(D)∆1 · ∆3 + (pr vE·(D)∆1)
∗∆2 · ∆3)

= E(∆3 · (pr vD∆1
(E) − pr vD·(E)∆1 + (pr vD·(E)∆1)

∗

+pr vE∆1
(D) − pr vE·(D)∆1 + (pr vE·(D)∆1)

∗)∆2).

�

Remark 2. The right hand side of the formula

[D, E](∆1, ∆2, ∆3) (15)

= ∆3 · pr vD∆1
(E)∆2 + ∆1 · pr vD∆2

(E)∆3 + ∆2 · pr vD∆3
(E)∆1

+∆3 · pr vE∆1
(D)∆2 + ∆1 · pr vE∆2

(D)∆3 + ∆2 · pr vE∆3
(D)∆1,

which is part of the proof, appears as formula (7.30) in [Olv]. This formula is
an identity of functionals. This definition still has the first drawback, that trivial
functionals do not in general vanish identically, but only up to local divergence.
The second drawback is eliminated and one can see the (3, 0)-tensoriality of the
expression. But due to the first drawback it still not completely easy to see that
this expression is in fact a 3-vector. If we instead use Proposition 2 to define the
bracket, these properties follow immediately:

Lemma 4. The Nijenhuis-Schouten bracket satisfies the following properties:

(i) [D, E] is a 3-vector, i.e. is totally skew-adjoint:
(a) [D, E](∆) is a total differential operator in the source form ∆.
(b) [D, E](∆) is skew-adjoint.
(c) [D, E](∆)Σ = −[D, E](Σ)∆.

(ii) [D, E] = [E ,D].

Proof. (i.b) follows immediately from the skew-adjointness of D, E and for
(i.c) we further need to notice that pr vD·(E)∆ = (pr v·(E)∆)D and (12) for
functional bi-vectors i.e. skew-adjoint operators K : F1 → V1. �

Definition 5 (Poisson bracket). Let D : F1 → V1 be a differential operator.
The Poisson bracket of two functionals L, P is defined by

{L, P} = E(L) · DE(P), (16)

which is again a functional.

Computer Algebra in Scientific Computing 7

Definition 6 (Hamiltonian structure). A differential operator D : F1 → V1

is called Hamiltonian if its Poisson bracket (16) is skew-symmetric

{L, P} = −{P,L}, (17)

and satisfies the Jacobi identity

{{L, P}, R} + {{R,L}, P} + {{P,R}, L} = 0, (18)

for all functionals L, P,R. These are identities between functionals.

Proposition 3. A differential operator D is Hamiltonian, if and only if D is a
2-vector satisfying [D,D] = 0.

Proof. First we note that if we replace E by D in the right hand side of
(15), then, up to a factor, we obtain (7.11) in [Olv]. The rest is done by [Olv]
Propositions 7.3, 7.4. �

Definition 7 (Hamiltonian equations). Let K ∈ V1 and ut = K a system of
evolution equations. We say the evolution equation is Hamiltonian, if there exists
a Hamiltonian structure D and a functional H, such that

K = DE(H). (19)

Definition 8 (Bi-Hamiltonian structure). Let ut = EE(H0) = DE(H1) be a
system with two Hamiltonian structures. The system is called bi-Hamiltonian, if
[D, E] = 0.

Remark 3. Bi-Hamiltonian systems with a nondegenerate D possess a recursion
operator R = ED−1 generating an infinite family of Hamiltonian symmetries,
which by Noether’s theorem give rise to an infinite family of conservation laws.
This is typical for an integrable system. Details are found in [Olv] and [Bar].

Example 1. The KdV equation ut = uxxx + uux has a bi-Hamiltonian structure
with D = Dx, H1 = 1

6
u3 − 1

2
u2

x, E = Dxxx + 2
3
uDx + 1

3
ux and H0 = 1

2
u2.

3 Example

In this section we use jets to compute the set of all Hamiltonian structures
of order three and jets up to order one, compatible with D = Dx, obtaining
candidates for nonlinear integrable systems.

> restart;

Loading the package:
> read‘maple/lib/desolv‘: with(jets):

Defining the list of independent and dependent variables (p = q = 1):
> ivar:=[x]; dvar:=[u]; var:=op(alljets(1,ivar,dvar));

ivar := [x]

8 Mohamed Barakat

dvar := [u]

var := x, u, ux

Defining the operator D:

> DD:=[[1,[x]]];

DD := [[1, [x]]]

Defining the general operator E : F1 → V1 of order at most 3, depending on
jet variables of order at most 1, on which we impose several conditions:

> SMP:=[[Qxxx(var),[x,x,x]],[Qxx(var),[x,x]],
[Qx(var),[x]],[Q(var),[]]];

SMP := [[Qxxx(x, u, ux), [x, x, x]],

[Qxx(x, u, ux), [x, x]], [Qx(x, u, ux), [x]], [Q(x, u, ux), []]]

The first condition is the compatibility of D and E , i.e. they must commute
(Definition 8). This is a linear condition for E :

> BRA:=nsbra3(DD,SMP,ivar,dvar):

Here we extract the linear conditions, for the resulting functional 3-vector
to vanish. We use the fact that [D, E](T) is a total differential operator in
T = (T u1

, . . ., T uq

):

> CND1:=getcond(map(a->a[1],BRA),map(a->a[1],SMP),
ivar,[op(dvar),T.(op(dvar))]):

‘jsolve’ is a wrapper function which uses the package desolv to solve the given
system of linear PDEs:

> jsolve(CND1): RES1:=subs(CND1[4],%):

The third list is the general solution, and the fourth list is the list of all
functions and constants appearing in the general solution. The first empty
list means that desolv succeeded to completely solve the system:

> RES1;

[[], [], [Qxxx(x, u, ux) = F 3(x), Qxx(x, u, ux) = F 4(x),

Qx(x, u, ux) = F 5(x, u),

Q(x, u, ux) =
1

2
(

∂

∂x
F 5(x, u)) +

1

4
F 8(x) +

1

2
ux (

∂

∂u
F 5(x, u))],

[F 5(x, u), F 4(x), F 3(x), F 8(x)]]

Computer Algebra in Scientific Computing 9

Define the intermediate E , i.e. the general E that satisfies the linear condition
[D, E] = 0:
> SMP1:=convert(subs(RES1[3],SMP),D);

SMP1 := [[F 3(x), [x, x, x]], [F 4(x), [x, x]], [F 5(x, u), [x]],

[
1

2
D1(F 5)(x, u) +

1

4
F 8(x) +

1

2
ux D2(F 5)(x, u), []]]

E is skew-adjoint. This condition also produces a linear system of PDEs:
> sadj(SMP1,ivar,dvar):
CND2:=getcond(map(a->a[1],%),RES1[4],ivar,dvar);

CND2 := [F 4(x) −
3

2
(

∂

∂x
F 3(x)),−

3

2
(

∂2

∂x2
F 3(x)) + (

∂

∂x
F 4(x)),

1

4
F 8(x) −

1

2
(D(3))(F 3)(x) +

1

2
(D(2))(F 4)(x)],

[F 5(x, u), F 4(x), F 3(x), F 8(x)], [x, u], [x = x, u = u]

Find the solution and redefine the intermediate E :
> RES2:=jsolve(CND2):
SMP2:=convert(esubs(RES2[3],SMP1),D);

SMP2 := [[F 3(x), [x, x, x]], [
3

2
D(F 3)(x), [x, x]], [F 5(x, u), [x]],

[
1

2
D1(F 5)(x, u) −

1

4
(D(3))(F 3)(x) +

1

2
ux D2(F 5)(x, u), []]]

For E to be Hamiltonian, E must commute with itself (Definition 3):
> nsbra3(SMP2,SMP2,ivar,dvar):
CND3:=getcond(map(a->a[1],%),RES2[4],
ivar,[op(dvar),T.(op(dvar))]):

The resulting conditions form a nonlinear system of PDEs:
> CND3;

[2 %1 F 3(x), 2 %4 F 3(x) − %5,−
3

2
%5 + 3 %4 F 3(x),

−
3

2
D2(F 5)(x, u) (D(2))(F 3)(x) +

3

2
%4 D(F 3)(x) + 3 F 3(x) %6,

3 %1 F 3(x), 3 F 3(x) %3, 6 F 3(x) %2 +
3

2
%1 D(F 3)(x),

3 %1 F 3(x),
3

2
D(F 3)(x) %3 + 3F 3(x) D1,2,2,2(F 5)(x, u),

3

2
%1 D(F 3)(x) + 3 F 3(x) %2,−3 %1 F 3(x),

3 D(F 3)(x) %2 + 3F 3(x) D1,1,2,2(F 5)(x, u), %1 F 3(x),

10 Mohamed Barakat

3 F 3(x) %3, F 3(x) D2,2,2,2(F 5)(x, u), F 3(x) D1,1,1,2(F 5)(x, u)

+
3

2
D(F 3)(x) %6 −

1

2
D2(F 5)(x, u) (D(3))(F 3)(x),

3

2
%5 − 3 %4 F 3(x),−3 F 3(x) %3,−%1 F 3(x),

−F 3(x) D2,2,2,2(F 5)(x, u),−3 %1 F 3(x),

−3 F 3(x) %2 −
3

2
%1 D(F 3)(x),−3 F 3(x) %3,

−3 D(F 3)(x) %2 − 3 F 3(x) D1,1,2,2(F 5)(x, u),

1

2
D2(F 5)(x, u) (D(3))(F 3)(x) − F 3(x) D1,1,1,2(F 5)(x, u) −

3

2
D(F 3)(x) %6,

−
3

2
%4 D(F 3)(x) − 3 F 3(x) %6 +

3

2
D2(F 5)(x, u) (D(2))(F 3)(x),

%5 − 2 %4 F 3(x),−
3

2
D(F 3)(x) %3 − 3 F 3(x) D1,2,2,2(F 5)(x, u),

−6 F 3(x) %2 −
3

2
%1 D(F 3)(x),−2 %1 F 3(x)],

[F 3(x), F 5(x, u)], [u, x], [x = x, u = u, Tu = Tu, u[x] = ux,

Tu[x, x, x] = Tux,x,x, Tu[x, x] = Tux,x, u[x, x] = ux,x, u[x, x, x] = ux,x,x,

Tu[x] = Tux]

%1 := D2,2(F 5)(x, u)

%2 := D1,2,2(F 5)(x, u)

%3 := D2,2,2(F 5)(x, u)

%4 := D1,2(F 5)(x, u)

%5 := D2(F 5)(x, u) D(F 3)(x)

%6 := D1,1,2(F 5)(x, u)

Because we assume F 3(x) 6= 0, the first equation in CND3 yields:

> SUBS:=SMP2[3,1]=G_1(x)*u+G_2(x);

SUBS := F 5(x, u) = G 1(x) u + G 2(x)

Reinserting the new F 5(x) in CND3:

> esubs(SUBS,CND3[1]);

[0, 2 D(G 1)(x) F 3(x) − G 1(x) D(F 3)(x),

−
3

2
G 1(x) D(F 3)(x) + 3 D(G 1)(x) F 3(x),

−
3

2
G 1(x) (D(2))(F 3)(x) +

3

2
D(G 1)(x) D(F 3)(x)

+ 3 F 3(x) (D(2))(G 1)(x), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

F 3(x) (D(3))(G 1)(x) +
3

2
D(F 3)(x) (D(2))(G 1)(x)

Computer Algebra in Scientific Computing 11

−
1

2
G 1(x) (D(3))(F 3)(x),

3

2
G 1(x) D(F 3)(x) − 3 D(G 1)(x) F 3(x), 0, 0, 0, 0, 0, 0, 0,

1

2
G 1(x) (D(3))(F 3)(x) − F 3(x) (D(3))(G 1)(x)

−
3

2
D(F 3)(x) (D(2))(G 1)(x),−

3

2
D(G 1)(x) D(F 3)(x)

− 3 F 3(x) (D(2))(G 1)(x) +
3

2
G 1(x) (D(2))(F 3)(x),

G 1(x) D(F 3)(x) − 2 D(G 1)(x) F 3(x), 0, 0, 0]

The first nonzero equation:
> eqn:=2*D(G_1)(x)*F_3(x)-G_1(x)*D(F_3)(x);

eqn := 2 D(G 1)(x) F 3(x) − G 1(x) D(F 3)(x)

Solve with Maple’s internal ‘dsolve’ command:
> sol:=dsolve(eqn,F_3(x));

sol := F 3(x) = C1 G 1(x)2

The solution of the first equation satisfies all other equations!
> simplify(esubs([SUBS,sol],CND3[1]));

[0, 0]

Define the final E , i.e. the most general Hamiltonian operator of order at most
3, depending on jet variables of order at most 1:
> symp:=esubs([SUBS,sol],SMP2);

symp := [[C1 G 1(x)2, [x, x, x]], [3 C1 G 1(x) D(G 1)(x), [x, x]],

[G 1(x) u + G 2(x), [x]], [
1

2
D(G 1)(x) u +

1

2
D(G 2)(x)

−
3

2
C1 D(G 1)(x) (D(2))(G 1)(x) −

1

2
C1 G 1(x) (D(3))(G 1)(x)

+
1

2
ux G 1(x), []]]

Check skew-adjointness:
> sadj(symp,ivar,dvar);

0

Check compatibility:
> nsbra3(DD,symp,ivar,dvar);

0

12 Mohamed Barakat

Check the Hamiltonian condition:
> nsbra3(symp,symp,ivar,dvar);

0

Example 1 ([GDo1]):
> EX1:=gcollect(
esubs([_C1=0,G_1(x)=2*C[2],G_2(x)=2*C[1]],symp),ivar);

EX1 := [[2 C2 u + 2 C1, [x]], [ux C2, []]]

> CEX1:=gcollect(
esubs([_C1=1/(4*D[2]^2),G_1(x)=2*D[2]],symp),ivar);

CEX1 := [[1, [x, x, x]], [2 D2 u + G 2(x), [x]], [
1

2
D(G 2)(x) + ux D2, []]]

The last two operators form a Hamiltonian pair (C1,C2,D2 constants):
> nsbra3(EX1,CEX1,ivar,dvar);

0

Example 2 (KdV):
> gcollect(
esubs([_C1=9/4,G_1(x)=2/3,G_2(x)=f(x)],symp),ivar);

[[1, [x, x, x]], [
2

3
u + f(x), [x]], [

1

2
D(f)(x) +

1

3
ux, []]]

For f(x) = 0 we obtain the KdV-operator:
> KdV:=[[1,[x,x,x]],[2/3*u,[x]],[1/3*u[x],[]]];

KdV := [[1, [x, x, x]], [
2

3
u, [x]], [

1

3
ux, []]]

If we choose G 1(x) = D2 = const then E commutes even with the more
general operator (2C2u + 2C1)Dx + C2ux:
> nsbra3(EX1,esubs(G_1(x)=D[2],symp),ivar,dvar);

0

References

[And] Ian M. Anderson The Variational Bicomplex. (to appear).
[Bar] Mohamed Barakat Functional Spaces. A Direct Approach. Ph.D. thesis (under review).
[GDo1] I. M. Gel’fand and I. Ya. Dorfman. Hamiltonian operators and algebraic structures

related to them. Func. Anal. Appl. 13 (1979), 248-262.
[GDo2] I. M. Gel’fand and I. Ya. Dorfman. Hamiltonian operators and infinite-dimensional Lie

algebras. Func. Anal. Appl. 15 (1981), 173-187.
[Har] Gehrt Hartjen Variational calculus and conservations laws with Maple. Diploma thesis

(under review).
[Olv] Peter J. Olver. Applications of Lie Groups to differential Equations. 2nd Edition. 1998,

Springer-Verlag.

