
Chapter 1

Desolv Documentation

The Desolv package is implemented in the symbolic software, Maple. Desolv is
simply a solver which attempts to find the solutions of a linear or nonlinear system
of overdetermined differential equations of polynomial type. The implementation
of Desolv is based on a heuristic procedure, which does not always promise
to produce complete solutions of a system. If the heuristic procedure fails to
simplify a system completely, it will transform the system of unsolved equations
into a standard form. The heuristics is made up of seven modules which are the
one-term module, the direct separation module, the solving unknown module,
the indirect separation module, the integration module, the solving ODE module
and the decoupling module; these have been described in Chapter Three.

The development of Desolv is based on the symbolic package LIE written
by Alan Head [?] in MuMATH; LIE is a solver for systems of linear PDEs.
Desolv has a simpler structure than LIE. Desolv partly adopts the methods
of separation and integration in CRACK [?] (Thomas Wolf and Andre Brand)
written in REDUCE and the method of decoupling in both standard form [?]
(Gregory Reid and Allan Wittkopf) and diffgrob2 [?] (Elizabeth Mansfield),
which are both written in Maple. Desolv is designed to handle large systems
efficiently without running into memory problems.

Desolv includes other algorithms which help to analyse Lie point symmetries,
non-classical symmetries and potential symmetries.

The Desolv package runs on Maple Version V, Release 3 or later releases.
The descriptions of main functions in Desolv are given in this chapter. The

global parameters of Desolv which can be controlled by users are also described
in details. Examples are used to demonstrate how to find point symmetries,
non-classical symmetries and potential factors. A classification problem of point
symmetries is illustrated in section (6.6). Section (6.7) shows that the function
decouple() can work differently with and without changing the global parameters.
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1.1 The Main Function pdesolv()

The function pdesolv() solves a system of overdetermined differential equations.
It requires three arguments and outputs a list of four elements. The input and
output of

pdesolv(leqns,lfn,lvar)

are as follows:

INPUT:
- leqns is a list of differential expressions
- lfn is a list of unknown functions
- lvar is a list of variables
OUTPUT: a list of 4 elements [reqns,linq,lsol,lunk]
- reqns is a list of differential expressions
- linq is a list of differential expressions
- lsol is a list of solutions of functions in lfn

- lunk is a list of unknowns occuring in reqns, linq and lsol

The equations in the list leqns are in linear homogeneous form. The functions
and the constants in lfn are the unknowns in leqns. The variables in lvar are
the variables on which the differential equations leqns depend. In the cases that
pdesolv() does not solve the system leqns completely, a list of unsolved equations
is returned as reqns. During any calculation, pdesolv() normally makes the
assumptions that some expressions are non-zero. These expression are called
inequations. If these inequations contain any unknown functions/constants, they
are stored in the list linq. If the input list leqns is a linear system of differential
equations, then linq is an empty list. The list lsol contains the solutions to
the unknowns in lfn. The list lunk consists of unknown functions or constants
appearing in reqns, linq and lsol. Any unknowns arising during the simplification
process are denoted as F i for functions and C k for constants, where i and k

are integers. The highest values of i and k are stored in the global variables
desolv function and desolv constant respectively.

1.2 The Parameters in Desolv

Desolv has some parameters that allows the user to have control of the simpli-
fication process.

desolv module - The number of modules used in the simplification process. The
function pdesolv() consists of seven modules which are in the following order:
the solving one-term module, the direct separating module, the solving
unknown module, the indirect separating module, the integrating module,
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the solving ordinary DE module and the decoupling module. By default,
desolv module is set to be 7. For example, if desolv module is set to be 4,
then only the first four modules are used to simplify a system of differential
equations.

desolv modstat - A list of integers which tells how many times each module is
successfully applied.

desolv Nterm - The number of terms in an equation. There are two different
ways of scanning a system of differential equations through the modules.
One way is to take the whole system and scan it through each module.
This is called horizontal scan. The other way is take one equation at a
time and scan it through each module. This is called vertical scan. pde-

solv() splits a system into two lists, one list S contains equations having
desolv Nterm terms or less and one list L contains equation having more
than desolv Nterm terms. pdesolv() uses vertical scan for the list S and
horizontal scan for the list L. The default value is 1.

desolv function - The number of new unknown functions which are introduced
into the system during the call of pdesolv. desolv function is set to be 1
each time the function pdesolv() is called.

desolv constant - The number of new unknown constants which are introduced
into the system during the call of pdesolv(). desolv constant is set to be
1 each time the function pdesolv() is called.

desolv reduce - The default value is true. When an integrability condition
has been computed, it is immediately reduced with respect to the current
system. If desolv reduce is set to be false, no reduction is done at this
stage.

desolv sublimit - The default value is 105. During the calculation of the decou-
pling module, the coefficient of the highest derivative of an equation may get
very large. If the length of the coefficient is greater than desolv sublimit,
the coefficient is replaced by an arbitrary function which has the same de-
pendencies as the coefficient. The arbitrary function replacement of the
coefficient prevents the system from large expansion.

desolv efactor - The expansion factor. When the solution of an unknown func-
tion or constant is found in the simplification process, its solution is substi-
tuted into equations that contain the function. As a substitution is made
to an equation, the function pdesolv() compares the length of the equation
before and after the substitution. If the equation is expanded after the
substitution by a factor greater than desolv efactor, then the substitu-
tion will not be done to the equation and delay until all the modules have
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unsuccessfully applied to the equation. desolv efactor is set to 1000 by
default.

desolv nzassume - A list of expressions that are assumed to be non-zero during
the simplification process.

desolv liassume - A list of lists of expressions that are assumed to be linearly
independent of each other during the simplification process.

infolevel[pdesolv] - The setting of infolevel[pdesolv] causes the display of in-
termediate results during the calculation of the function pdesolv(). Higher
values of infolevel[pdesolv] will cause more information to be displayed.
Other options for infolevel are provided, such as, infolevel[gendef], in-
folevel[genvec], infolevel[comtab], infolevel[separation], infolevel[decouple].

1.3 Classical symmetries

As a prototypical example of how to find point symmetry with the help of the
Desolv package, the linear heat equation

uxx − ut = 0 (1.1)

is considered. The defining equations of the point symmetry can be generated by
the function gendef() which requires three input arguments, as follows:

gendef(deqns, dvar, ivar)

INPUT:
- deqns is a list of differential equations
- dvar is a list of dependent variables
- ivar is a list of independent variables
OUTPUT: a list of 3 elements [leqns, lfn, lvar]
- leqns is a list of homogeneous differential equations
- lfn is a list of infinitesimal functions
- lvar is a list of variables

The differential equations in deqns usually have the highest derivatives on
the left hand side (lhs). If the highest derivatives are not on the left hand sides
of the equations, gendef() will automatically put the equations into the solved
form for the highest derivatives. The system of defining equations leqns are in
the homogeneous form. The system leqns has been reduced with respect to its
one-term equations. The list lfn contains infinitesimal functions corresponding
to the variables in lvar. The infinitesimal function of an independent variable
x is denoted by xi[x] in maple-syntax whereas the infinitesimal function of a
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dependent variable u is denoted by eta[u]. In the MapleV Release 3 and later
versions, the name xi[x] is displayed as ξx. The symmetry generator of the heat
equation is expressed as

v = xi[x]
∂

∂x
+ xi[t]

∂

∂t
+ eta[u]

∂

∂u
(1.2)

Example: Generation of the defining equations for the linear heat equation:

> read desolv:

> de := [ diff(u(x,t),x,x) - diff(u(x,t),t) = 0 ];

de :=

[(

∂2

∂x2
u(x, t)

)

−

(

∂

∂t
u(x, t)

)

= 0

]

> le := gendef(de,[u],[x,t]);

le :=

[[

∂

∂u
ξx(x, t, u),

∂

∂u
ξt(x, t, u),

∂

∂x
ξt(x, t, u),

∂2

∂u2
ηu(x, t, u),

−2

(

∂

∂x
ξx(x, t, u)

)

+

(

∂

∂t
ξt(x, t, u)

)

,−

(

∂

∂t
ηu(x, t, u)

)

+

(

∂2

∂x2
ηu(x, t, u)

)

,

2

(

∂2

∂u∂x
ηu(x, t, u)

)

+

(

∂

∂t
ξx(x, t, u)

)

−

(

∂2

∂x2
ξx(x, t, u)

)]

,

[ξx(x, t, u), ξt(x, t, u), ηu(x, t, u)] , [x, t, u]

]

This system of overdetermined linear PDEs can be simplified by the function
pdesolv(). The function pdesolv() returns one unsolved equation. There is no
assumption made on any unknown functions or constants in the solution. The
solution contains one unknown function F 4(x, t) and six unknown constants,
C 1 to C6.

Example: (Heat equation)

> sol := pdesolv(le[1],le[2],le[3]);

sol :=

[[

−

(

∂

∂t
F 4(x, t)

)

+

(

∂2

∂x2
F 4(x, t)

)]

, [ ],

[

ξx(x, t, u) =
1

2
xC 4 + xtC 5 +

1

2
C 1 +

1

2
tC 2,

5



ξt(x, t, u) = C 3 + tC 4 + t2C 5,

ηu(x, t, u) = F 4(x, t) −
1

4
uC 5x2 −

1

4
uC 2x−

1

2
utC 5 +

1

8
uC 6

]

,

[F 4(x, t), C 1, C 2, C 3, C 4, C 5, C 6]

]

¿From the solutions of the infinitesimal functions, Lie vectors can be formed
by using the function genvec(). The function genvec() has three arguments and
returns a list of vectors, as follows:

genvec(lsol, lpar, lvar)

INPUT:
- lsol is a list of solutions
- lpar is a list of parameters
- lvar is a list of variables
OUTPUT:
- a list of vectors.

The left hand side of a solution in lsol must be a function. Each function on
the left hand side in lsol corresponds to a variable in lvar. The corresponding
pair of function and variable must have the same position in lsol and lvar. For
example,

leqns = [xi[x](· · ·) = · · · , xi[t](· · ·) = · · · , eta[u](· · ·) = · · ·]

lvar = [x, t, u]

A vector is expressed in the form of a sum of a list of a coefficient and a list of
variables. As an example,

x
∂

∂t
+ sin(u)

∂

∂x
− t2

∂

∂u
−→ [x, [t]] + [sin(u), [x]] + [−t2, [u]]

> lv := genvec(sol[3],sol[4],le[3]);

lv :=

[

[F 4(x, t), [u]] , [1, [x]] ,
[

1

2
t, [x]

]

+
[

−
1

4
ux, [u]

]

,

[1, [t]] , [1, [u]] ,
[

1

2
x, [x]

]

+ [t, [t]] ,

[xt, [x]] +
[

t2, [t]
]

+
[

−
1

4
ux2 −

1

2
ut, [u]

]

]
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Thus in our example the Lie-vectors of the heat equation are

∂
∂x
, ∂

∂t
, ∂

∂u
,

t
2

∂
∂x

− xu
4

∂
∂u

x
2

∂
∂x

+ t ∂
∂t
,

xt ∂
∂x

+ t2 ∂
∂t
− u

4
(x2 + 2t) ∂

∂u
, F 4(x, t) ∂

∂u

The function comtab() calculates the table of commutators of a list of vectors
in the form that generates from genvec(). The function comtab() requires two
arguments and returns a square matrix or a square matrix with a list of equations,
as follows:

comtab(lvec,lvar)

INPUT:
- lvec is a list of vectors
- lvar is a list of variables
OUTPUT:
- a square matrix or a square matrix and a list of equations.

Each element of the output matrix is expressed linearly in terms of psi[i] which
denotes the ith-vector in lvec. The following Maple session shows the calculation of
the commutator table of the vectors lv without the vector, [F 4(x, t), [u]], because
it contains the unknown function F 4(x, t).

Example: (Heat equation)

> comtab(subsop(1=NULL,lv),le[3]);





















0 −1
4
ψ6 0 1

2
ψ1 2ψ2 0

1
4
ψ6 0 −1

2
ψ1 −1

2
ψ2 0 0

0 1
2
ψ1 0 ψ3 2ψ4 −

1
2
ψ6 0

−1
2
ψ1

1
2
ψ2 ψ3 0 ψ5 0

−2ψ2 0 −2ψ4 + 1
2
ψ6 −ψ5 0 0

0 0 0 0 0 0





















When a commutator of two vectors cannot be expressed as a linear combination
of psi[i], it is replaced by a variable, called gamma[k] (γk) in the commutator
table where k is an integer. For this case, comtab() outputs is a matrix of
commutator and a list of expressions of gamma[k].

Example: (Heat equation)
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> ct := comtab(subsop(1=NULL,lv),le[3]):

> print(ct[1]);



























0 γ1 γ2 γ3 γ4 γ5 ψ1

−γ1 0 −1
4
ψ6 0 1

2
ψ1 2ψ2 0

−γ2
1
4
ψ6 0 −1

2
ψ1 −1

2
ψ2 0 0

−γ3 0 1
2
ψ1 0 ψ3 2ψ4 −

1
2
ψ6 0

−γ4 −1
2
ψ1

1
2
ψ2 ψ3 0 ψ5 0

−γ5 −2ψ2 0 −2ψ4 + 1
2
ψ6 −ψ5 0 0

−ψ1 0 0 0 0 0 0



























> ct[2];

[

γ1 =

[

−

(

∂

∂x
F 4(x, t)

)

, [u]

]

, γ2 =

[

−
1

4
F 4(x, t)x−

1

2
t

(

∂

∂x
F 4(x, t)

)

, [u]

]

,

γ3 =

[

−

(

∂

∂t
F 4(x, t)

)

, [u]

]

, γ4 =

[

−
1

2
x

(

∂

∂x
F 4(x, t)

)

− t

(

∂

∂t
F 4(x, t)

)

, [u]

]

,

γ5 =

[

−
1

4
F 4(x, t)x2 −

1

2
F 4(x, t)t− xt

(

∂

∂x
F 4(x, t)

)

− t2
(

∂

∂t
F 4(x, t)

)

, [u]

] ]

1.3.1 Arbitrary Functions of Derivatives

In classification problems, some equations may contain arbitrary functions of
derivatives of dependent variables. When the defining equations are calculated,
these arbitrary functions must be treated carefully. In most of the available
symbolic packages, defining equation generators have problems in dealing with
such equations, but it is not the case for the function gendef(). A demonstration
of Desolv calculating the point symmetry of such an equation is shown. The
quasilinear hyperbolic equation of the general form is

vtt = f(x, vx) vxx + g(x, vx) (1.3)

This equation admits a symmetry group of 3 parameters.

∂

∂t
,
∂

∂v
, t

∂

∂v

Example: the PDE vtt = f(x, vx) vxx + g(x, vx)
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> V := v(x,t):

> de := [ diff(V,t,t) = f(x,diff(V,x))*diff(V,x,x) + g(x,diff(V,x)) ];

de :=

[(

∂2

∂t2
v(x, t)

)

= f

(

x,
∂

∂x
v(x, t)

)(

∂2

∂x2
v(x, t)

)

+ g

(

x,
∂

∂x
v(x, t)

)]

> le := gendef(de,[v],[x,t]);

le :=

[[

ξx(x, t, v),
∂

∂t
ξt(x, t, v),

∂

∂v
ηv(x, t, v),

∂

∂x
ηv(x, t, v),

∂

∂v
ξt(x, t, v),

∂

∂x
ξt(x, t, v),

∂2

∂t2
ηv(x, t, v)

]

,

[ξx(x, t, v), ξt(x, t, v), ηv(x, t, v)] , [x, t, v]

]

> sol := pdesolv(op(le));

sol := [[ ], [ ], [ξx(x, t, v) = 0, ξt(x, t, v) = C 1, ηv(x, t, v) = C 2 + tC 3] ,

[C 1, C 2, C 3]

> genvec(sol[3],sol[4],le[3]);

[[1, [t]], [1, [v]], [t, [v]]]

1.4 Nonclassical Symmetries

For the Burgers’ equation [?]

ut = uxx + 2uux (1.4)

the infinitesimal generator is

v = xi[x]
∂

∂x
+ xi[t]

∂

∂t
+ eta[u]

∂

∂u
(1.5)

The invariant surface condition (ISC) is

eta[u] = xi[t]ut + xi[x]ux (1.6)
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For the case 1 with xi[t] = 1, the ISC becomes

eta[u] = ut + xi[x]ux (1.7)

and for the case 2 with xi[x] = 1, xi[t] = 0, the ISC is

eta[u] = ux (1.8)

The function gennc() generates the defining equations of the nonclassical sym-
metry. gennc() requires four arguments with the fourth argument to be optional
and returns a list of elements, as follows:

gennc(deqns, dvar, ivar, lcase)

INPUT:
- deqns is a list of differential equations
- dvar is a list of dependent variables
- ivar is a list of independent variables
- lcase is a list of case-number (Optional)
OUTPUT: a list of 3 elements [leqns,lfn,lvar]
- leqns is a list of lists of differential expressions
- lfn is a list of infinitesimal functions
- lvar is a list of variables

gennc() will generate all the cases for the nonclassical method when the argument
lcase is omitted. The case-numbers in lcase represent the cases that the function
gennc() will output. The following Maple session shows the calculation of defining
equations of nonclassical symmetry for the Burgers’ equation with the case 1.

Example: Burger’s equation

> read desolv:

> U := u(x,t):

> de := [ diff(U,t) = diff(U,x,x) + 2*U*diff(U,x) ];

de :=

[

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) + 2u(x, t)

∂

∂x
u(x, t)

]

> le := gennc(de,[u],[x,t],[1]):

> le[1][1];

[

∂2

∂u2
ξx(x, t, u) , ξt(x, t, u) − 1,−2

(

∂

∂x
ξx(x, t, u)

)

ηu(x, t, u) +

(

∂2

∂x2
ηu(x, t, u)

)

−

(

∂

∂t
ηu(x, t, u)

)

+ 2u

(

∂

∂x
ηu(x, t, u)

)

4u

(

∂

∂u
ξx(x, t, u)

)

+

(

∂2

∂u2
ηu(x, t, u)

)

10



+2ξx(x, t, u)

(

∂

∂u
ξx(x, t, u)

)

− 2

(

∂2

∂u∂x
xix(x, t, u)

)

, 2u

(

∂

∂x
ξx(x, t, u)

)

+2

(

∂2

∂u∂x
ηu(x, t, u)

)

−

(

∂2

∂x2
ξx(x, t, u)

)

+ 2ξx(x, t, u)

(

∂

∂x
ξx(x, t, u)

)

−2ηu(x, t, u)

(

∂

∂u
ξx(x, t, u)

)

+ 2ηu(x, t, u) +

(

∂

∂t
ξx(x, t, u)

)]

This system of defining equations is nonlinear in xi[x], xi[t] and eta[u]. When
the function pdesolv() is used to simplify an system of nonlinear differential equa-
tions, it is better to exclude the decoupling module from the simplification pro-
cess. The decoupling module very often runs out of memory space when dealing
with nonlinear systems because of the complexity and expansion. The global
parameter desolv module which is set to 6, will force the function pdesolv() to
use the first 6 modules, without the decoupling module.

Example: Burger’s equation

> desolv_module := 6:

> sol := pdesolv(le[1][1],le[2],le[3]):

This Maple session yields three sets of solutions for the nonclassical symmetry
of the Burgers’ equation with the case 1. The first solution contains 2 unsolved
equations.

4F 5(t)3 +

(

∂2

∂t2
F 5(t)

)

+ 6F 5(t)

(

∂

∂t
F 5(t)

)

= 0

−

(

∂2

∂t2
F 6(t)

)

−4F 5(t)2F 6(t)−4F 5(t)

(

∂

∂t
F 6(t)

)

−2F 6(t)

(

∂

∂t
F 5(t)

)

= 0

ξt(x, t, u) = 1

ξx(x, t, u) = F 5(t)x− F 6(t)

ηu(x, t, u) = −
1

2
x

(

∂

∂t
F 5(t)

)

+
1

2

(

∂

∂t
F 6(t)

)

−F 5(t)2x+ F 5(t)F 6(t) − uF 5(t)

subject to F 5(t)x− F 6(t) 6= 0.
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The second solution is

ξt(x, t, u) = 1

ξx(x, t, u) = −2u

ηu(x, t, u) = 0

The third solution contains three unsolved equations subject to one condition,
F 1(x, t) 6= 0.

−
(

∂2

∂x2F 3(x, t)
)

+
(

∂
∂t
F 3(x, t)

)

+ 2
(

∂
∂x
F 1(x, t)

)

F 3(x, t) = 0
(

∂
∂t
F 4(x, t)

)

−
(

∂2

∂x2F 4(x, t)
)

− 2
(

∂
∂x
F 3(x, t)

)

+ 2
(

∂
∂x
F 1(x, t)

)

F 4(x, t) = 0
(

∂
∂t
F 1(x, t)

)

− 2
(

∂
∂x
F 4(x, t)

)

−
(

∂2

∂x2F 1(x, t)
)

+ 2F 1(x, t)
(

∂
∂x
F 1(x, t)

)

= 0

ξt(x, t, u) = 1

ξx(x, t, u) = F 1(x, t) + u

ηu(x, t, u) = −u3 − F 1(x, t)u2 − F 3(x, t) − uF 4(x, t)

1.5 Potential symmetries

An important calculation in the case of potential symmetry is to find potential

factors. Potential factors are needed to put an equation into a potential form,
from which a potential system can be derived. In this section, an example of
calculating potential factors using Desolv is demonstrated.

Example: Consider the nonlinear diffusion equation S0{u} [?] given by

ut = (K(u)ux)x (1.9)

The Fréchet derivative of S0 can be computed by the function frechet():

frechet(leqns, dvar, ivar)

INPUT:
- leqns is a list of differential equations
- dvar is a list of dependent variables
- ivar is a list of independent variables
OUTPUT:
- a square matrix

The output is a matrix of vectors which are expressed in the form of a sum of
lists.

> de := [ diff(u(x,t),t) = diff( K(u(x,t))*diff(u(x,t),x),x ) ];
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de :=





∂

∂t
u(x, t) = D(K)(u(x, t))

(

∂

∂x
u(x, t)

)2

K(u(x, t))

(

∂2

∂x2
u(x, t)

)





> F := frechet(de,[u],[x,t]);

F :=

[

[−K(u(x, t)), [x, x]] +

[

−2D(K)(u(x, t))

(

∂

∂x
u(x, t)

)

, [x]

]

+ [1, [t]]

+

[

−D(2)(K)(u(x, t))

(

∂

∂x
u(x, t)

)2

−D(K)(u(x, t))

(

∂2

∂x2
u(x, t)

)

, 1

]]

The adjoint of the Fréchet derivative F can be calculated by calling the func-
tion adjointD():

adjointD(M, lvar)

INPUT:
- M is a square matrix of vectors
- lvar is a list of variables
OUTPUT:
- a square matrix

> adjointD(F,[x,t]);

[[−K(u(x, t)), [x, x]] + [−1, [t]]]

The function genfac() generates the system of defining equations for poten-
tial factors of a system of differential equations. The function genfac() requires
three arguments, a list of equations, a list of dependent variables and a list of
independent variables:

genfac(deqns, dvar, ivar)

13



INPUT:
- deqns is a list of differential equations
- dvar is a list of dependent variables
- ivar is a list of independent variables
OUTPUT: a list of 3 elements [leqns,lfn,lvar]
- leqns is a list of differential expressions
- lfn is a list of potential factor-functions
- lvar is a list of variables

The potential factor-functions are denoted as lambda[i] by default where i are
integers.

> le := genfac(de,[u],[x,t]);

le :=

[[

∂

∂u
λ1(x, t, u),−K(u)

(

∂2

∂x2
λ1(x, t, u)

)

−

(

∂

∂t
λ1(x, t, u)

)]

, [λ1(x, t, u)] , [x, t, u]

]

> sol := pdesolv(op(le));

sol := [[ ], [ ], [λ1(x, t, u) = C 1 + xC 2] , [C 1, C 2]]

Therefore the potential factors of the system S0 are {1, x}. The potential
factor λ1 = x yields the potential system S1{u,v},

vx = xu (1.10)

vt = x(L(u))x − L(u) (1.11)

where K(u) = L′(u). By repeating the above steps, we find that the solutions
for the potential factors of S1{u,v} are (λ1, λ2) = (0, x−2).

> U := u(x,t): V := v(x,t):

> de := [ diff(V,x) = x*U, diff(V,t) = x*diff( L(U),x) - L(U) ];

de :=

[

∂

∂x
v(x, t) = xu(x, t),

∂

∂t
v(x, t) = xD(L)(u(x, t))

(

∂

∂x
u(x, t)

)

− L(u(x, t))

]

> F := frechet(de,u,v],[x,t]);
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F := [[−x, 1], [1, [x]]]
[

[−xD(L)(u(x, t)), [x]] +

[

−xD(2)(L)(u(x, t))

(

∂

∂x
u(x, t)

)

+D(L)(u(x, t)), 1

]

,

[1, [t]]

]

> adjointD(F,[x,t]);

[

[−x, 1] [xD(L)(u(x, t)), [x]] + [2D(L)(u(x, t)), 1]
[−1, [x]] [−1, [t]]

]

> le := genfac(de,[u,v],[x,t]);

le :=

[[

∂

∂u
λ2(x, t, u, v),−

(

∂

∂u
λ1(x, t, u, v)

)

−

(

∂

∂v
λ2(x, t, u, v)

)

x

(

∂

∂u
L(u)

)

,

−xλ1(x, t, u, v) + x

(

∂

∂u
L(u)

)(

∂

∂x
λ2(x, t, u, v)

)

+ x2

(

∂

∂u
L(u)

)

(

∂

∂v
λ2(x, t, u, v)

)

u+ 2

(

∂

∂u
L(u)

)

λ2(x, t, u, v),

−

(

∂

∂x
λ1(x, t, u, v)

)

−

(

∂

∂v
λ1(x, t, u, v)

)

xu−

(

∂

∂t
λ2(x, t, u, v)

)

+

(

∂

∂v
λ2(x, t, u, v)

)

L(u)

]

, [λ1(x, t, u, v), λ2(x, t, u, v)] , [x, t, u, v]

]

> sol := pdesolv(op(le));

sol :=
[

[ ], [ ],
[

λ1(x, t, u) = 0, λ2(x, t, u) =
C 1

x2

]

, [C 1]
]

1.6 Classification

Example: The nonhomogenous Monge-Ampère equation contains an arbitrary
function a(x, y),

uxxuyy − u2
xy + a2 = 0 (1.12)

Different values of the arbitrary function give different symmetry groups (see,
e.g., the section 9.4 in the handbook of Lie group analysis of differential equations
Vol.1, N.H.Ibragimov [?]). The case where a = xβyγ is examined:
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> U := u(x,y):

> de := [diff(U,x,x)*diff(U,y,y)-diff(U,x,y)^2+(x^beta*y^gamma)^2=0];

de :=





(

∂2

∂x2
u(x, y)

)(

∂2

∂y2
u(x, y)

)

−

(

∂2

∂y∂x
u(x, y)

)2

+
(

xβ
)2

(yγ)2 = 0





> le := gendef(de,[u],[x,y]);

le :=

[[

∂

∂u
ξy(x, y, u),

∂

∂u
ξx(x, y, u),

∂2

∂x2
ξy(x, y, u),

∂2

∂y∂x
ηu(x, y, u),

∂2

∂y2
ηu(x, y, u),

∂2

∂u2
ηu(x, y, u),

∂2

∂x2
ηu(x, y, u),

∂2

∂y2
ξx(x, y, u),

2

(

∂2

∂u∂y
ηu(x, y, u)

)

−

(

∂2

∂y2
ξy(x, y, u)

)

, −

(

∂2

∂u∂x
ηu(x, y, u)

)

+

(

∂2

∂y∂x
ξy(x, y, u)

)

,

(

∂2

∂u∂y
ηu(x, y, u)

)

+

(

∂2

∂y∂x
ξx(x, y, u)

)

,

2

(

∂2

∂u∂x
ηu(x, y, u)

)

−

(

∂2

∂x2
ξx(x, y, u)

)

, −

(

∂

∂y
ξy(x, y, u)

)

yx

−

(

∂

∂x
ξx(x, y, u)

)

yx+

(

∂

∂u
ηu(x, y, u)

)

yx− ξy(x, y, u)γx− ξx(x, y, u)βy

]

,

[ξx(x, y, u), ξy(x, y, u), ηu(x, y, u)] , [x, y, u]

]

> sol := pdesolv(op(le));

sol :=

[

[ ], [ ],

[

ξx(x, y, u) = xC 10,

ξy(x, y, u) = −
y(C 14 + C 10 + C 10β)

γ + 1
,

ηu(x, y, u) = −C 13 − uC 14 + yC 1 + xC 3

]

,

[C 1, C 3, C 10, C 13, C 14]

]

> lv := genvec(sol[3],sol[4],le[3]);

lv := [[y, [u]], [x, [u]], [x+ xγ, [x]] + [−y − yβ, [y]], [1, [u]], [x, [x]] + [u+ uβ, [u]]]
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The equation admits 5 symmetries,

y
∂

∂u
, x

∂

∂u
,
∂

∂u
,

(1 + γ)x
∂

∂x
− (1 + β)y

∂

∂y
, x

∂

∂x
+ (1 + β)u

∂

∂u

During the simplification process, the function pdesolv() assumes some ex-
pressions to be non-zero such as denominators and coefficients of the leading
derivatives. When pdesolv() applies the method of direct separation to an equa-
tion, the expressions which depend on the separating variable are assumed to be
linearly independent of each other. The function classify() displays non-zero as-
sumptions and linearly independent assumptions. The arguments of the function
classify(), which are optional, are names of arbitrary functions or constants.

> classify(gamma,beta);

non-zero assumptions γ

β

γ + 1
β + 1

β + 2 + γ

linearly independent assumptions

If these expressions of β and γ are equal to zero, the equation may admit
different sets of symmetries. These expressions are stored in the global vari-
able, desolv nzassume and desolv liassume. For γ = β = −1, the equation
becomes

uxxuyy − u2
xy + x−2y−2 = 0 (1.13)

This equation admits 7 symmetries instead of 5 in the general case.

> U := u(x,y):

> de := [ diff(U,x,x)*diff(U,y,y) - diff(U,x,y)^2 + 1/(x*y)^2 = 0];

> le := gendef(de,[u],[x,y]);

> sol := pdesolv(op(le));
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sol :=

[

[ ], [ ],

[

ξx(x, y, u) = −x2C 12 − xC 17 + xyC 2,

ξy(x, y, u) = y2C 2 + yC 15 − xyC 12,

ηu(x, y, u) = C 5 + yC 9 + yuC 2 + xC 7 − xuC 12

]

,

[C 2, C 5, C 7, C 9, C 12, C 15, C 17]

]

> lv := genvec(sol[3],sol[4],le[3]);

lv := [[x, [u]], [1, [u]], [xy, [x]] + [y2, y] + [yu, [u]], [y, [u]], [y, [y]],

[x2, [x]] + [xy, [y]] + [xu, [u]], [x, [u]]]

1.7 Decoupling

A system of differential equations which contain arbitrary functions (or classi-
fied functions) often cause difficulties for simplification. A system of nonlinear
telegraph equations [?] which contains two arbitrary functions f and g is

vt = ux (1.14)

vx = f(u)ut + g(u) (1.15)

The 8 defining equations for point symmetries are

−
∂ξx

∂u
+
∂ξt

∂v
= 0

−
∂ξt

∂u
+ f

∂ξx

∂v
= 0

∂ηu

∂u
+
∂ξt

∂t
−
∂ηv

∂v
+
∂ξx

∂x
= 0

∂ηu

∂x
−
∂ηv

∂t
+ g

∂ξx

∂t
+ g

∂ηu

∂u
= 0

−
∂ξt

∂x
− g

∂ξt

∂v
−
∂ηv

∂u
+ f

∂ξx

∂t
+ g

∂ξx

∂u
+ f

∂ηu

∂v
= 0

−g
∂ξx

∂u
− g

∂ξt

∂v
− f

∂ηu

∂v
+
∂ηv

∂u
+ f

∂ξx

∂t
−
∂ξt

∂x
= 0

g
∂ηv

∂v
− g2∂ξx

∂v
+
∂ηv

∂x
− g′ηv − f

∂ηu

∂t
− g

∂ξx

∂x
= 0
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None of these equations can be simplified by the first six modules of the
function pdesolv(). Thus the defining system needs to be transformed into the
standard form by the decoupling module. The function decouple() takes in
three arguments, a list of equations, a list of unknowns and a list of variables, as
follows,

decouple(leqns, lfn, lvar)

INPUT:
- leqns is a list of differential equations
- lfn is a list of unknown functions
- lvar is a list of variables
OUTPUT:
- a list of differential equations

As the function decouple() simplifies the above system, the calculation does
not get very far before the computer is hung up due to a great expansion of
the system. The parameter infolevel[decouple] can be set to be 3 to display
intermediate computation of the function decouple().

> U := u(x,t): V := v(x,t):

> de := [ diff(V,t) = diff(U,x), diff(V,x) = f(U)*diff(U,t) + g(U)]:

> le := gendef(de,[u,v],[x,t]):

> infolevel[decouple] := 3:

> s := decouple(le[1],le[2],le[3]):

The large expansion is caused by equations whose coefficients of highest
derivatives depend on arbitrary functions f(u) and g(u). When these equations
reduce another equation, they may be differentiated with respect to u a number
of times. One of the techniques used by the function decouple() to overcome the
expansion problem is to replace large coefficients of the highest derivatives with
arbitrary functions, namely AAA k where k are integers. The functions AAA k

have the same dependencies as the coefficients. A replacement is done depending
on how large the coefficient is. The global variable desolv sublimit allows the user
to control such replacements. If the length of a coefficient is larger than the value
of desolv sublimit, a replacement will take place. By default, desolv sublimit
is set to be at 105.

Another technique of avoiding the expansion is to delay the reduction of inte-
grability conditions. When an integrability condition is computed, immediately
it is reduced with respect to the current system. The reduction can be delayed
until all integrability conditions are calculated by setting the parameter des-
olv reduce to be false. By default, the parameter desolv reduce is set to be
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true. The following Maple session shows how the function decouple() simplifies the
above defining equations by setting desolv reduce = false and desolv sublimit
= 100.

Example:

> read desolv:

> de := [ diff(v(x,t),t) = diff(u(x,t),x),

diff(v(x,t),x) = f(u(x,t))*diff(u(x,t),t) + g(u(x,t)) ]:

> le := gendef(de,[u,v],[x,t]):

> desolv_reduce := false:

> desolv_sublimit := 100:

> s1 := decouple(le[1],le[2],le[3]);

s1 :=

[

ηu(x, t, u, v),
∂

∂v
ξx(x, t, u, v),

∂

∂v
ξt(x, t, u, v),

∂

∂v
ηv(x, t, u, v),

∂

∂u
ξx(x, t, u, v),

∂

∂u
ξt(x, t, u, v),

∂

∂t
ξx(x, t, u, v),

∂

∂u
ηv(x, t, u, v),

∂

∂t
ξt(x, t, u, v),

∂

∂t
ηv(x, t, u, v),

∂

∂x
ξt(x, t, u, v),

∂

∂x
ξt(x, t, u, v),

∂

∂x
ηv(x, t, u, v)

]

> sol := pdesolv(s1,le[2],le[3]);

sol := [[ ], [ ], [ξx(x, t, u, v) = C 3,

ξt(x, t, u, v) = C 1, ηu(x, t, u, v) = 0, ηv(x, t, u, v) = C 2],

[C 1, C 2, C 3]]

bytes used=82878192, alloc=2489912, time=547.67

This Maple session took 547 seconds of CPU time to complete. The inter-
mediated calculation of the function decouple() can be displayed by setting the
variable infolevel[decouple]. The higher the value of infolevel[decouple], the
more calculation is displayed.
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