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Abstract. In this paper we demonstrate the power of the computer algebra package
conley, which enables one to compute connection and transition matrices, two of the main
algebraic tools of the Conley index theory. In particular, we study the Cahn-Hilliard

equation on the unit square and extend the results obtained in [Maier-Paape et al., 2007]
to a bigger range of the bifurcation parameter. Besides providing several explicit compu-
tations using conley, the definition of connection matrices is reconsidered, simplified, and
presented in a self-contained manner in the language of Conley index theory. Further-
more, we introduce so-called energy induced bifurcation intervals, which can be utilized
by conley to differential equations with a parameter. These bifurcation intervals are used
to automatically path-follow the set of connection matrices at bifurcation points of the
underlying set of equilibria.
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1. Introduction

In recent years Conley index theory has become a very powerful tool for studying in-
variant sets of dynamical systems (see for example [Mischaikow and Mrozek, 2002]). Con-
nection matrices, a central concept in that theory, enables one to investigate and prove the
existence of heteroclinic connections between (isolated) invariant sets.

In the dynamical systems community connection matrices do have a touch of mystery.
The reason is twofold. On the one hand, the concept heavily relies on homological algebra
and even elementary aspects like the definition or the existence of connection matrices
[Franzosa, 1989] are difficult to comprehend without a solid algebraic background. On the
other hand, the full power of the connection matrix concept can only be reached, when
non-trivial intrinsic dynamical arguments are coupled with the algebraic arguments (see
for instance [Maier-Paape et al., 2007]).

This is where our contribution here comes into play. Our main purpose is to automatize
the above mentioned algebraic (and to some extent also the dynamical) arguments in
order to be able to calculate (even larger) connection matrices with a computer. Since
many relevant examples arise from bifurcations, where the internal structure of the isolated
invariant set under consideration gets more and more complicated, we also put emphasis
on the possibility to bridge over bifurcation points. This is mainly worked out in Section 5,
where we revisit and extend the results obtained in [Maier-Paape et al., 2007] for the global
attractor of the Cahn-Hilliard equation on a square. Due to computer power we were
not only able to verify the results in [Maier-Paape et al., 2007], but also to rebase the
proofs on more conventional arguments, which finally allowed us to push the investigation
of the bifurcation diagram to a new parameter range. We also introduce in Definition 5.1
the new algebraic concept of a energy induced bifurcation interval, which is very helpful to
automatically path-follow connection matrices at bifurcation points. Although clearly not
yet there, in the long run it now seems possible to develop software autonomously analyzes
the fine structure of dynamical systems.

Although the concept of connection matrices naturally leads to braids as already pro-
posed in [Franzosa, 1989] we show, following [Barakat and Robertz, 2009], that exactly
the same concept is obtained by only imposing isomorphisms of long exact sequences.
Clearly this makes the verification of connection matrices a lot easier. In contrast to
[Barakat and Robertz, 2009], which used a purely algebraic setup, we here give the simpli-
fied definition of connection matrices within the conventional language of Conley index
theory and with a minimum of algebraic preliminaries. Since our primary motivation is
the application to dynamical systems we try to keep the obviously necessary algebra part
as small as possible. Nevertheless we introduce enough Conley index theory to keep the
definition of connection matrices self–contained. We therefore in Section 3 reproduce a
minimum of the basic notations and give the braids free definition of connection matrices
in Definition 3.5. Before doing so, in Section 2 we give a few simple examples illustrating



COMPUTATION OF CONNECTION MATRICES USING THE SOFTWARE PACKAGE conley 3

the intuitive and geometric ideas behind Conley index theory without any formal defi-
nitions. These examples give a preview of the nature of results that can be obtained and
furthermore show how Conley’s ideas in fact generalize the classical Morse theory.

In order to introduce the syntax of the package conley, we discuss in Section 4 two easy
examples of Franzosa ([Franzosa, 1989]) on the non–uniqueness of connection matrices
and the corresponding transition matrix.

The two main procedures of the software package conley are ConnectionMatrices and
TransitionMatricesGenerators. They require as their input the relevant Morse set
together with an admissible ordering, along with Conley index data of isolated invariant
sets. An elaborate version of the examples of Sections 4 and 5 can be found in form
of Maple worksheets in the library of examples on the homepage of the conley project
[Barakat et al., 2008].

In future we plan to port the Maple package conley to GAP4 as part of the emerging new
homalg project (http://homalg.math.rwth-aachen.de/). Within GAP4, using its object
oriented programming philosophy, the input syntax will be considerably simplified. The
new homalg project allows the combination of several efficient software resources under one
hat, whereby computation time of the conley procedures will be cut by a huge factor. In
particular, it would also be possible to combine algebraic together with numerical software
for bifurcation analysis.

2. Historical Remarks

In order to give some examples illustrating the usefulness of Conley index theory we
first make some historical remarks. This introductory section is not necessary to understand
the formal theory starting in Section 3.

One of the motivations of Conley was to generalize Morse theory. The main idea
of Morse theory is to study the topological properties of an n-dimensional smooth man-
ifold X by studying the critical points of a so-called Morse function f : X → R. A
Morse function is a smooth function with non-degenerate critical points. For such a non-
degenerate critical point p ∈ X the Morse lemma guarantees the existence of a coordinate
system x = (x1, . . . , xn) around p such that f can be written as

f(x) = f(p)− x2
1 − · · · − x2

γ + x2
γ+1 + · · ·+ x2

n.

The number γ is called the Morse index of the critical point p and denoted by index(p).
Let cγ denote the number of critical points of Morse index γ. The Morse formula

(1) χ(X) =

n∑

γ=0

(−1)γcγ .

computes the Euler-Poincaré characteristic χ(X) in terms of the indices of the critical
points of f , where by definition

χ(X) :=
n∑

i=0

(−1)iβi(X),

http://homalg.math.rwth-aachen.de/
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which is the alternating sum of the Betti numbers.

p1

p2

p3

p4f(x) = height(x)

p1

p2

p3 p4

f(x) = height(x)

Figure 1. Critical points on torus T and heart H

We illustrate this with two examples in Figure 1. It turns out that the height function
f(x) = height(x) is a Morse function for both surfaces. On the torus T we have four
critical points p1, . . . , p4 with c0 = c2 = 1 and c1 = 2. On the heart H we have also four
critical points but c0 = c1 = 1 and c2 = 2. Hence χ(T) = 0 and χ(H) = 2.

Now Conley’s idea was to replace f by the flow generated by the gradient ∇f and
develop a general index theory for flows on manifolds. Note that in Conley’s theory the
flow is not necessarily a gradient flow.

The first central notion in Conley index theory is the Conley index of isolated in-
variant sets (a formal definition will be given in (4)). For the purpose of this introductory
section we only need the Conley index of the whole manifold X and those of the hyper-
bolic equilibria p of the flow, which correspond to the (non-degenerate) critical points of
the Morse function f .

Define the homology Conley index CH∗(X) of the closed manifold X as the graded
object of homology groups of X, i.e.

(2) CH∗(X) := H∗(X) = H∗(X, ∅) = (H0(X), H1(X), . . .).

For the purpose of this section we take homology with values in a field K for simplicity.
Let γ denote the dimension of the unstable manifold of a hyperbolic equilibrium p ∈ X.

If the flow ϕ is a gradient flow of a Morse function f , then γ is the Morse index index(p)
mentioned above. The homology Conley index CH∗(p) of p now generalizes the Morse

index in the following way (see also Prop. 3.1): It is again a graded object of K-vector
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spaces CH∗(p) = (CH0(p), CH1(p), . . .) such that

CHi(p) ∼=

{
K if i = γ ,
0 otherwise .

The second central notion in Conley index theory is that of a connection matrix.
We assume for simplicity that ϕ is a strict gradient flow with a finite set P of equilibria,

all of them hyperbolic. Define the sum of graded objects

C = (Ci)i≥0 =
⊕

p∈P

CH∗(p).

Consider a sequence of maps ∆ = (∆1, ∆2, . . .) with ∆i : Ci → Ci−1 such that ∆i−1◦∆i = 0,
turning C into a complex. We will write C∆ for the complex C endowed with ∆ as a
boundary operator. A sequence ∆ is called a connection matrix if, among other things (see
Def. 3.5), the following property holds:

(3) Hi(C
∆) ∼= CHi(X).

In our heart example from above it can be verified that ∆ = (∆1, ∆2) in

C∆ : 0←− K
1

∆1=
“

0
”

←−−−−−− K
1

∆2=
“

1 1
”

←−−−−−−−−− K
2 ←− 0

is a connection matrix.
One of the main results of Conley index theory implies that non-trivial entries in this

connection matrix correspond to heteroclinic connections between p3 → p2 and p4 → p2.
Another major result is Franzosa’s existence result of a connection matrix [Franzosa, 1989,
Thm. 3.8] yielding in particular (3), whereas uniqueness in not always guaranteed.

Therefore, in general, connection matrices may be used to reduce the huge amount of
possible heteroclinic connections, and even prove existence of some of the connections.

As a nice application of the above developed notion, the Morse formula (1) now imme-
diately follows from the existence of a connection matrix. In case ϕ is the gradient flow of
a Morse function f then dimK C∆

i = ci, the number of critical points of f with Morse

index i. Then

χ(X) =
∑n

i=0(−1)i dimK Hi(X)
(2)
=

∑n

i=0(−1)i dimK CHi(X)

(3)
=

∑n
i=0(−1)i dimK Hi(C

∆) =
∑n

i=0(−1)i dimK C∆
i

=
∑n

i=0(−1)ici,

where the fore-last equation is a standard application of the homomorphism theorem.

3. Conley index theory

Let X be a locally compact metric space. The object of study is a flow ϕ : R×X → X,
i.e. a continuous map R×X → X which satisfies ϕ(0, x) = x and ϕ(s, ϕ(t, x)) = ϕ(s+ t, x)
for all x ∈ X and s, t ∈ R. (X, ϕ) is called a dynamical system.
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3.1. Homology Conley index. The following theory has been initiated by Conley

[Conley, 1978] in order to study invariant sets of dynamical systems. For a subset Y ⊂ X
define

Inv(Y ) := Inv(Y, ϕ) := {x ∈ Y | ϕ(R, x) ⊂ Y } ⊂ Y,

the invariant subset of Y .
A subset S ⊂ X is invariant under the flow ϕ, if S = Inv(S). S is called an isolated

invariant set if there exists a compact set Y ⊂ X (an isolating neighborhood) such that

S = Inv(Y ) ⊂
◦

Y ,

where
◦

Y denotes the interior of Y .
Let M be an isolated invariant set. A pair of compact sets (N, L) with L ⊂ N is called

an index pair for M (cf. [Mischaikow and Mrozek, 2002, Def. 2.4]) if

(1) N \ L is an isolating neighborhood of M .
(2) L is positively invariant, i.e. ϕ([0, t], x) ⊂ L for all x ∈ L satisfying ϕ([0, t], x) ⊂ N .
(3) L is an exit set for N , i.e. for all x ∈ N and all t1 > 0 such that ϕ(t1, x) 6∈ N , there

exists a t0 ∈ [0, t1] for which ϕ([0, t0], x) ⊂ N and ϕ(t0, x) ∈ L.

Let M ⊂ S be an isolated invariant set with index pair (N, L). We associate to such a
pair a complex C∗(N, L) ∼= C∗(N)/C∗(L) of relative (simplicial or singular . . .) chains. The
homology Conley index of M is defined by

(4) CH∗(M) = H∗(N, L) := H∗(C∗(N, L)),

where H∗(N, L) = (Hk(N, L))k∈Z≥0
denotes the relative homology groups (cf. [Mischaikow and Mrozek, 2002

Def. 3.7, Thm. 3.8]). Note, that there always exits an index pair (N, L), such that
H∗(N, L) = H∗(N/L, [L]) (see [Mischaikow and Mrozek, 2002, Remark 3.9]). We usually
take coefficients in Z/2Z.

Before we proceed, let us recall the homology Conley index of some specific isolated
invariant sets.

Proposition 3.1. Assume that S contains only a hyperbolic fixed point with an unstable
manifold of dimension n (i.e. Morse index n). Then S is an isolated invariant set and

CHk(S) ∼=

{
Z2 if k = n ,
0 otherwise .

For the remainder of this paper, we will abbreviate this statement by saying that the Con-

ley index of S is equal to Σn, i.e. write CH∗(S) = Σn.

Note, that usually Σn = (Sn, ∗) denotes the homotopy type of the index pair (N, L) of
a hyperbolic fixed point of Morse index n. But since we are only interested in homology,
we abuse the notation.

In order to apply Conley’s theory to Morse decompositions of the attractor, we
need to know the Conley index of the attractor itself. By the continuation property
[Mischaikow and Mrozek, 2002, Thm. 3.10] it is the same as the one of a stable fixed point
(see [McCord and Mischaikow, 1996, Prop. 4.1]).
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Proposition 3.2. If the dynamical system (X, ϕ) possesses a global attractor A, then we
have

CHk (A) =

{
Z2 for k = 0 ,
0 for k 6= 0 .

The empty set S is also an isolated invariant set having the trivial Conley index

(5) CHk (S) = 0 for all k.

This occurs e.g. if an isolating neighborhood of a parallel flow is considered. Similarly,
a heteroclinic connection between two hyperbolic fixed points stemming from a saddle
node bifurcation has trivial Conley index, although the isolated invariant set is no longer
empty.

3.2. Posets. A set P together with a strict partial order > (i.e. an irreflexive and transitive
relation >⊂ P × P ) is called a poset (i.e. partially ordered set) and is denoted by (P, >).

A subset I ⊂ P is called an interval in (P, >) if for all p, q ∈ I and r ∈ P the following
implication holds:

q > r > p ⇒ r ∈ I.

The set of all intervals in (P, >) is denoted by I(P, >).
An n-tuple (I1, . . . , In), n ≥ 2, of intervals in (P, >) is called adjacent if these intervals

are mutually disjoint,
⋃n

i=1 Ii is an interval in (P, >) and for all p ∈ Ij, q ∈ Ik the following
implication holds:

j < k ⇒ p 6> q.

The set of all adjacent n-tuples of intervals in (P, >) is denoted by In(P, >).
If (I1, . . . , In) is an adjacent n-tuple of intervals in (P, >), then denote I1I2 . . . In :=⋃n

i=1 Ii, which by definition is again an interval.
If (I, J) ∈ I2(P, >) as well as (J, I) ∈ I2(P, >), then I and J are said to be incomparable.

3.3. Morse decomposition. For a subset Y ⊂ X the ω-limit set of Y is ω(Y ) :=⋂
t>0 ϕ([t,∞), Y ), while the α-limit set of Y is α(Y ) :=

⋂
t>0 ϕ((−∞,−t), Y ).

For two subsets Y1, Y2 ⊂ X define the set of connecting orbits

Con(Y1, Y2) = Con(Y1, Y2; X) := {x ∈ X | α(x) ⊂ Y1 and ω(x) ⊂ Y2}.

Let S be an isolated invariant set and (P, >) be a poset. A finite collection

M(S) = {M(p) | p ∈ P}

of disjoint isolated invariant subsets M(p) of S is called a Morse decomposition if there
exists a strict partial order > on P , such that for every x ∈ S \

⋃
p∈P M(p) there exist

p, q ∈ P , such that q > p and x ∈ Con(M(q), M(p)).
The sets M(p) are called Morse sets. A partial order on P satisfying this property is

said to be admissible.
There is a partial order >ϕ induced by the flow, generated by the relations q >ϕ p

whenever Con(M(q), M(p)) 6= ∅. This so called flow-induced order is a subset of every
admissible order, and in this sense minimal. Normally this order is not known and one is
content with a coarser order. If, for example, a Lyapunov or energy function E is known
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with E(x) > E(ϕ(t, x)) for all t > 0, whenever x ∈ X is not a steady state, then defining
the partial order >E by

q >E p, iff E(y) > E(x) for all y ∈M(q) and x ∈M(p),

yields an admissible order, in case the energy levels of all non-equilibrium Morse sets are
isolated in the energy spectrum. This order is called energy-induced order.

For an interval I define the set

M(I) :=
⋃

p∈I

M(p) ∪
⋃

p,q∈I

Con(M(q), M(p)).

M(I) is again an isolated invariant set (cf. [Mischaikow and Mrozek, 2002, Prop. 2.12]). If
(I, J) ∈ I2(P, >), then (M(I), M(J)) is an attractor-repeller pair in M(IJ) (cf. [Mischaikow and Mrozek, 2002
Def. 2.1]).

3.4. Connection matrices. We start by revising the definition of connection matrices
following [Barakat and Robertz, 2009]. Contrary to [Barakat and Robertz, 2009] we apply
matrices from the left and hence use the column convention, as widely used in the Conley

index literature.
Let M(S) = {M(p) | p ∈ (P, >)} be a Morse decomposition of S. Hence each M(p)

is an isolated invariant set and the Conley index CH∗(M(p)) is well-defined (by (4)). In
what follows, we consider the collection C := {CH∗(M(p)) | p ∈ P} of abelian groups,
which are indexed by P , and a group homomorphism

(6) ∆ :
⊕

p∈P

CH∗(M(p))→
⊕

p∈P

CH∗(M(p)).

For an interval I in (P, >) set C∗(I) :=
⊕

p∈I CH∗(M(p)) and denote by ∆(I) : C∗(I)→
C∗(I) the homomorphism πI ◦∆ ◦ ιI , where ιI : C∗(I)→ C∗(P ) is the canonical injection
and πI : C∗(P )→ C∗(I) is the canonical projection.

If p1, p2 ∈ P , we refer to the restriction of ∆ to C∗(p2) by ∆(·, p2) : C∗(p2) → C∗(P ),
and the composition πp1

◦∆(·, p2), where πp1
is the projection C∗(P )→ C∗(p1), is denoted

by ∆(p1, p2) : C∗(p2)→ C∗(p1). Then ∆ can be visualized as a matrix with ∆(·, p2) as its
p2-th column and ∆(p1, p2) as its entry at position (p1, p2). In particular, for I ∈ I(P, >)
the homomorphism ∆(I) may be be represented as

∆(I) = (∆(p1, p2))p1,p2∈I :
⊕

p∈I

CH∗(M(p))→
⊕

p∈I

CH∗(M(p)).

Definition 3.3 ([Franzosa, 1988, Def. 1.3]). ∆ being as above:

(1) ∆ is said to be upper triangular if ∆(p1, p2) 6= 0 implies p2 > p1 or p1 = p2.
(2) ∆ is said to be strictly upper triangular if ∆(p1, p2) 6= 0 implies p2 > p1.
(3) ∆ is called a boundary map if it is a homomorphism of degree −1, i.e. it maps

Cn(P ) to Cn−1(P ), and ∆ ◦∆ = 0.

Proposition 3.4 ([Franzosa, 1989, Prop. 3.3]). Let C = {CH∗(M(p)) | p ∈ P} be as above
and let ∆ :

⊕
p∈P CH∗(M(p))→

⊕
p∈P CH∗(M(p)) be an upper triangular boundary map.

Then:
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(1) C∗(I) and ∆(I) form a chain complex denoted by C∆
∗ (I) for all I ∈ I(P, >).

(2) For all (I, J) ∈ I2(P, >), the obvious injection and projection maps i(I, IJ) and
p(IJ, J) are chain maps and

(7) 0→ C∆
∗ (I)

i(I,IJ)
−−−−→ C∆

∗ (IJ)
p(IJ,J)
−−−−→ C∆

∗ (J)→ 0

is a short exact sequence.

In other words, the degree −1 property and ∆◦∆ = 0 endow C∗(P ) with a chain complex
structure (called C∆

∗ (P )). The property “upper triangular” guarantees that ∆(I) is also
a boundary operator on C∗(I) leading to C∆

∗ (I). It further implies for a pair (I, J) of
adjacent intervals that ∆(IJ)|C∗(I) = ∆(I), allowing one to view C∆

∗ (I) as a subcomplex of
C∆

∗ (IJ), with C∆
∗ (J) being naturally isomorphic to the quotient complex C∆

∗ (IJ)/C∆
∗ (I),

making (7) a short exact sequence.
The first statement of Proposition 3.4 allows one to define the homology groups

H∗(C
∆
∗ (I)) := ker ∆(I)/im∆(I),

shortly denoted as H∗∆(I), while the second statement leads for each (I, J) ∈ I2(P, >) to
a long exact homology sequence

(8) · · · → Hn∆(I)→ Hn∆(IJ)→ Hn∆(J)
δn−→ Hn−1∆(I)→ · · · ,

where δ∗ are the connecting homomorphisms constructed by the snake Lemma.
To state the definition of a connection matrix we still need some more preliminaries from

the dynamics side. For a pair (I, J) of adjacent intervals (M(I), M(J)) is an attractor-
repeller pair for the isolated invariant set M(IJ), as stated before.

By definition an index triple (N2, N1, N0) for the attractor-repeller pair (M(I), M(J))
satisfies N0 ⊂ N1 ⊂ N2 and

(i) (N2, N0) is an index pair for the isolated invariant set M(IJ);
(ii) (N2, N1) is an index pair for the repeller M(J);
(iii) (N1, N0) is an index pair for the attractor M(I).

The existence of an index triple (N2, N1, N0) for the attractor-repeller pair (M(I), M(J))
is always guaranteed (cf. [Mischaikow and Mrozek, 2002, Thm. 4.2]), providing a short
exact sequence of chain complexes

0→ C∗(N1, N0)→ C∗(N2, N0)→ C∗(N2, N1)→ 0,

where C∗(Ni, Nj) is the complex of relative chains as in (4). This short exact sequence
induces a long exact homology sequence

· · · → Hn(N1, N0)→ Hn(N2, N0)→ Hn(N2, N1)
∂n−→ Hn−1(N1, N0)→ · · · .

In other words the last long exact sequence is by definition (cf. (4))

(9) · · · → CHn(M(I))→ CHn(M(IJ))→ CHn(M(J))
∂n−→ CHn−1(M(I))→ · · · .

Now we are ready to state the definition of a connection matrix (cf. [Franzosa, 1989,
Def. 3.6]), which avoids braids (cf. [Barakat and Robertz, 2009, Def. 2.7]). The definition
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of a connection matrix relates the algebraically induced long exact sequence (8) and the
dynamically induced long exact sequence (9), more precisely:

Definition 3.5 (Connection matrix). Let C = {CH∗(M(p)) | p ∈ P} be as above and
let ∆ :

⊕
p∈P CH∗(M(p)) →

⊕
p∈P CH∗(M(p)) be an upper triangular boundary map. ∆

is called a connection matrix if for each interval K ∈ I(P, >) there exits an isomorphism
θ(K) : H∗∆(K) → CH∗(M(K)) such that for all pairs (I, J) ∈ I2(P, >) of adjacent
intervals the following diagram
(10)

· · ·
δn+1

// Hn∆(I) //

θ(I)
��

Hn∆(IJ) //

θ(IJ)
��

Hn∆(J)
δn

//

θ(J)
��

Hn−1∆(I) //

θ(I)
��

· · ·

· · ·
∂n+1

// CHn(M(I)) // CHn(M(IJ)) // CHn(M(J))
∂n

// CHn−1(M(I)) // · · ·

is an isomorphism of long exact sequences, i.e. that additionally all the squares commute.

Remark 3.6 ([Barakat and Robertz, 2009, Remark 3.4]). We want to emphasize the im-
portance of first choosing a fixed isomorphism θ(K) for each interval K. This single iso-
morphism enters in all the commutative diagrams (10). Notably, in Franzosa’s definition
of connection matrices also a fixed isomorphism θ(K) for each interval K has to be chosen
a priori (cf. [Franzosa, 1988, Def. 1.2] or [Franzosa, 1989, Def. 2.4]).

Following [Barakat and Robertz, 2009], we show that this braid free definition coincides
with Franzosa’s definition of connection matrices [Franzosa, 1988, Def. 1.4] or [Franzosa, 1989,
Def. 3.6]:
In contrast to the above definition of connection matrices, Franzosa’s definition requires
the isomorphism of two graded module braids. The first braid is obtained as the ho-
mology of a chain complex braid in the setup of the upper triangular boundary map
∆ (cf. [Franzosa, 1989, Prop. 3.4] together with [Franzosa, 1989, Prop. 2.7]). The other
is obtained as the homology of the chain complex braid of an index filtration, which
in turn generalizes our index triples. Salamon proved in [Salamon, 1985] that index
filtrations of Morse decompositions always exit, (see also [Franzosa, 1986, Thm. 3.8],
[Franzosa and Mischaikow, 1988], and [Mischaikow, 1995, Thm. 4.2.4]). That an index fil-
tration of a Morse decomposition always induces a chain complex braid was proved in
[Franzosa, 1986, Section 4], see also the discussion before [Mischaikow, 1995, Def. 4.3.2].

Clearly, and because of the a priori chosen isomorphisms θ(K), the isomorphism of the
long exact sequences in Definition 3.5 gives rise to the isomorphism of the graded module
braids, as required by Franzosa.

Corollary 3.7. The definition of connection matrices following Franzosa [Franzosa, 1988,
Def. 1.4] is equivalent to Definition 3.5 above.

Franzosa’s existence theorem [Franzosa, 1989, Thm. 3.8] guarantees the existence of
at least one connection matrix, provided all CH∗(M(p)) are free over the coefficient ring.
By taking coefficients in a field, as we do by taking Z/2Z-coefficients, this is immediate.
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Remark 3.8. In practice, the lack of topological data, in particular of the index triples
on the dynamical side, prevents us from constructing the maps in (9) explicitly. Therefore
in the software package conley, we can only check a part of the defining properties of
connection matrices. More precisely, besides ∆ being an upper triangular boundary map
[Maier-Paape et al., 2007, Section 3, (C1,C2)], we, so far, only check abstract isomorphisms
Hn∆(K) ∼= CHn(M(K)) for each interval K ∈ I(P, >) as in [Maier-Paape et al., 2007,
Section 3, (C3)]. Accordingly, we call the matrices computed by conley possible connection
matrices.

4. Uniqueness and Non–Uniqueness of connection matrices

In this section we provide some examples of dynamical systems with few equilibria to
demonstrate the syntax and abilities of the conley package. In particular, we will see
how the amount of information provided to the program is crucial when searching for the
unique connection matrix — in case there is a unique one.

4.1. Franzosa’s example for non–uniqueness of connection matrices. Here we
demonstrate how a bifurcation phenomenon could lead to a non–uniqueness of the con-
nection matrix at the bifurcation point, although the whole dynamical data is given.
This example is taken from [Franzosa, 1989]. We discuss a 2-dimensional flow with a
parameter θ > 0. The relevant parametrized differential equation is:

(11)
ẋ = y

ẏ = θy − x

(
x −

1

3

) (
1 − x

)
.

We assume the reader is familiar with the analysis of (11) given in [Franzosa, 1989].
Regardless of θ we have three equilibria

M(1) = Mθ(1) =

{ (
1

3
, 0

) }
, M(2) = Mθ(2) =

{
(0, 0)

}
, M(3) = Mθ(3) =

{
(1, 0)

}

with Conley indices (cf. Prop. 3.1)

CH∗(M(1)) = Σ0 , CH∗(M(2)) = Σ1 and CH∗(M(3)) = Σ1 .

For 0 < θ′ ≪ 1 we get a flow ϕ′ indicated by the left of Figure 2 with only one flow–

induced relation 2 >ϕ′ 1, whereas for θ′′ ≫ 1 the flow changes qualitatively to ϕ′′ as
indicated by the right of Figure 2 with flow–induced relations 2 >ϕ′′ 1 and 3 >ϕ′′ 1.

The two flows ϕ′ and ϕ′′ are abstracted in Figure 3. In between these (abstract) flows a
bifurcation, illustrated by Figure 4, takes place.
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M(2)
M(1)

M(3) M(2)
M(1) M(3)

Figure 2. Flow for 0 < θ′ ≪ 1 (left) and θ′′ ≫ 1 (right)

M(3)

M(2) M(1)

M(3)

M(2) M(1)

Figure 3. Abstract flow for 0 < θ′ ≪ 1 (left) and θ′′ ≫ 1 (right)

M(3)

M(2) M(1)

Figure 4. Special (abstract) flow at the bifurcation point θspecial

In the following we explain the syntax of the package conley by demonstrating a typical
Maple session to perform the Conley index computations, here relevant to equation (11).
A condensed version of this worksheet can be found in the library of examples on the
homepage [Barakat et al., 2008] under the name Franzosa.

> restart;
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First we load the necessary packages: conley is the package containing the Conley

index algorithms, building upon a general purpose abstract homological algebra library
homalg. The package PIR provides homalg with the Maple built-in arithmetics over prin-
cipal ideal rings.

> with(conley): with(PIR): with(homalg):

> ‘homalg/default‘:=‘PIR/homalg‘:

The principal ideal ring relevant for the following computations is the prime field Z/2Z.

> var:=[2];

var := [2]

> Pvar(var);

[“Z/pZ”, 2]

The three equilibria of the dynamical system (11):

> P:=[1,2,3];

P := [1, 2, 3]

We define generating relations of the flow-induced order before the bifurcation 0 < θ′ ≪ 1,
i.e. 2 >ϕ′ 1,

> rel[0]:=[[2,1]];

rel0 := [[2, 1]]

at the bifurcation point θspecial,

> rel[special]:=[[3,2],[2,1]];

rel special := [[3, 2], [2, 1]]

and after the bifurcation 1≪ θ′′ <∞, i.e. 2 >ϕ′′ 1 and 3 >ϕ′′ 1:

> rel[infinity]:=[[2,1],[3,1]];

rel∞ := [[2, 1], [3, 1]]

With the below procedure GeneratePartialOrder we obtain the order generated by the
above relations:

> ord[0]:=GeneratePartialOrder(P,rel[0]);

ord0 := [[2, 1]]

> ord[special]:=GeneratePartialOrder(P,rel[special]);

ord special := [[2, 1], [3, 1], [3, 2]]

> ord[infinity]:=GeneratePartialOrder(P,rel[infinity]);

ord∞ := [[2, 1], [3, 1]]

The procedure GenerateIntervals returns the set of intervals in P with respect to the
given order:

> I1[0]:=GenerateIntervals(P,rel[0]);

I1 0 := [[], [2], [3], [1], [1, 2], [1, 3], [2, 3], [1, 2, 3]]
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> I1[special]:=GenerateIntervals(P,rel[special]);

I1 special := [[], [2], [3], [1], [1, 2], [2, 3], [1, 2, 3]]

> I1[infinity]:=GenerateIntervals(P,rel[infinity]);

I1∞ := [[], [2], [3], [1], [1, 2], [1, 3], [2, 3], [1, 2, 3]]

In case the Conley index of M(I) is known, it may be used for computations. We start
with the one-point intervals, i.e. the equilibria. The Conley indices of the three equilibria
are common for all three flows. M(1) is an attractor with Morse index 0. M(2) and M(3)
are saddle points with Morse index 1:

> CHp:=[0,1,1];

CHp := [0, 1, 1]

Now we provide the specifics of each of the three flows. The lists CHi are supposed to con-
tain Conley indices of specific isolated invariant sets M(I) of the flows (i = 0, special,∞).

In case 0 < θ′ ≪ 1 we add to the Conley indices of the equilibria only the Conley

index of the (maximal) isolated invariant set M(P ), obtaining CH0. P = 1 means that
the whole isolated invariant set has homology Conley index Σ1:

> CH[0]:=[op(zip((x,y)->x=y,P,CHp)),P=1];

CH 0 := [1 = 0, 2 = 1, 3 = 1, [1, 2, 3] = 1]

For θspecial we add, besides the Conley index of M(P ), the Conley indices of the isolated
invariant sets of the intervals {1, 2} and {2, 3}, obtaining CHspecial. [1,2]=[] means that
M({1, 2}) has the trivial Conley index. [2,3]=[0,2] means that the homology Conley

index of M({2, 3}) is (0, (Z/2Z)2, 0, . . .):

> CH[special]:=[op(zip((x,y)->x=y,P,CHp)),[1,2]=[],[2,3]=[0,2],P=1];

CH special := [1 = 0, 2 = 1, 3 = 1, [1, 2] = [], [2, 3] = [0, 2], [1, 2, 3] = 1]

For 1≪ θ′′ <∞ we add besides the Conley index of the isolated invariant set M(P ), the
Conley indices of the isolated invariant sets M({1, 2}) and M({1, 3}), obtaining CH∞:

> CH[infinity]:=[op(zip((x,y)->x=y,P,CHp)),[1,2]=[],[1,3]=[],P=1];

CH∞ := [1 = 0, 2 = 1, 3 = 1, [1, 2] = [], [1, 3] = [], [1, 2, 3] = 1]

The procedure ConnectionMatrices now provides a list of possible connection matrices
(cf. [Franzosa, 1989, Mischaikow and Mrozek, 2002]) for the given ordered set and Conley

index data. The procedure issues an error if any of the sets is not an interval with respect to
the ordering. For a given flow and a given Morse decomposition with admissible ordering
of the maximal invariant set each connection matrix will be found. However, the program
may return other matrices, in particular, if the Conley index data is incomplete. Of
course, in case ConnectionMatrices returns a single matrix, this is, due to Franzosa’s
existence result [Franzosa, 1989], a (or actually the unique) connection matrix.

For θ′ one obtains a unique connection matrix, although no Conley index information
about the intervals {1, 2}, {1, 3} and {2, 3} is used:
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> Con[0]:=ConnectionMatrices(P,rel[0],CH[0],var,"Hyp"):
> Involution,Con[0],var); 





0 1 0
0 0 0
0 0 0






The option "Hyp" or "Hyperbolic" can only be used if all elementary Morse sets are
hyperbolic equilibria. Since homalg uses the row convention by default, we transpose the
connection matrices using Involution. The output then confirms with the usual notation
used in the literature.

As expected, the only possible transition matrix is the identity matrix:
> TransitionMatrices(P,rel[0],CHp,var,"Hyp"):
> map(Involution,%,var);






1 0 0
0 1 0
0 0 1






The procedure TransitionMatrices expects as its input only the indices of the equilibria.

Although we use Conley index information of all possible intervals, the connection
matrix for θspecial is nevertheless non–unique (this was one of the main achievements of
[Franzosa, 1989]):

> Con[special]:=ConnectionMatrices(P,rel[special],CH[special],var,
> "Hyp"):
> map(Involution,Con[special],var);








0 1 0
0 0 0
0 0 0



 ,




0 1 1
0 0 0
0 0 0









The group of transition matrices is non-trivial. In contrast to the procedure Transition-
Matrices the below procedure returns only the generators of the transition matrix group:

> Ts:=TransitionMatricesGenerators(P,rel[special],CHp,var,"Hyp"):
> map(Involution,Ts,var);






1 0 0
0 1 1
0 0 1






The transition matrix group acts transitively on the set of connection matrices by conju-
gation. The output is a list of orbits (again lists) of connection matrices:

> Orb:=Orbits(Ts,Con[special],var,"Conjugation"):
> map(a->map(Involution,a,var),Orb);












0 1 0
0 0 0
0 0 0



 ,




0 1 1
0 0 0
0 0 0













The following is a list of the cardinalities of the different orbits (here only one):
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> map(nops,Orb);

[2]

For θ′′ one obtains a unique connection matrix, although no Conley index information
about the interval {2, 3} is used (Remark: the Conley index information of the intervals
{1, 2} and {1, 3} is required for uniqueness):

> Con[infinity]:=ConnectionMatrices(P,rel[infinity],CH[infinity],var,
> "Hyp"):
> map(Involution,Con[infinity],var);








0 1 1
0 0 0
0 0 0









As expected, the only possible transition matrix is the identity matrix:

> TransitionMatrices(P,rel[infinity],CHp,var,"Hyp");







1 0 0
0 1 0
0 0 1









Still for θ′′, but with Conley index information about a different set of intervals, one
obtains non–unique connection matrices:

> CH2[infinity] := [1 = 0, 2 = 1, 3 = 1, [1, 2] = [], [2, 3] = [0,2],
> [1, 2, 3] = 1];

CH2∞ := [1 = 0, 2 = 1, 3 = 1, [1, 2] = [], [2, 3] = [0, 2], [1, 2, 3] = 1]

> Con[infinity]:=ConnectionMatrices(P,rel[infinity],CH2[infinity],var,
> "Hyp"):
> map(Involution,Con[infinity],var);








0 1 0
0 0 0
0 0 0



 ,




0 1 1
0 0 0
0 0 0









Note, the only possible transition matrix in this situation remains the identity matrix,
since the transition matrix only depends on the index information of the one point intervals.

4.2. Franzosa’s transition matrix example. Next we look at a gradient flow ϕ serving
as a transition system connecting the two systems (11) at θ = θ′ and θ = θ′′

ẋ = y

ẏ = θy − x

(
x−

1

3

)
(1− x)(12)

θ̇ = ε(θ′ − θ)(θ′′ − θ),

with 0 < θ′ ≪ 1 and 1 ≪ θ′′ < ∞ as before and small ε > 0 fixed. This is also studied
in [Franzosa, 1989, Example 6.2]. The additional equation for θ = θ(t) is decoupled from
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the others. {θ = θ′} is invariant and attracting, while {θ = θ′′} is invariant and repelling
(cf. Figure 5). A sketch of the combined flow is given in Figure 6.

θ

θ′ θ′′

Figure 5. The flow in the θ-component

M(3′)

M(2′)

M(1′)

M(3′′)

M(2′′)

M(1′′)

θ

θ′ θ′′

???

Figure 6. The flow ϕ of the extended system

In contrast to Subsection 4.1 we refer for coding details to the worksheet Franzosa_all
on the homepage [Barakat et al., 2008].

Let 1′, 2′, 3′ denote the equilibria for θ = θ′ and 1′′, 2′′, 3′′ denote those for θ = θ′′. 1′, 2′, 3′

retain their Conley indices, while the Conley indices of 1′′, 2′′, 3′′ are raised by one, i.e.

(13)
CH∗(M(1′)) = Σ0 , CH∗(M(2′)) = Σ1, and CH∗(M(3′)) = Σ1;
CH∗(M(1′′)) = Σ1 , CH∗(M(2′′)) = Σ2, and CH∗(M(3′′)) = Σ2.

In this worksheet we perform computations with different orders and different Conley

index data.
Variant 1: The flow-induced order >ϕ (in short >) at least contains all connections

known for the θ = θ′ and the θ = θ′′ system, together with the connections between the
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different copies of the equilibria in the two θ-systems, i.e. we have at least the relations

(14) 2′ > 1′, 2′′ > 1′′, 3′′ > 1′′, 1′′ > 1′, 2′′ > 2′, 3′′ > 3′.

To the Conley indices of the equilibria we only add the Conley index of the whole
invariant set M(P ), which is trivial, i.e. besides (13)

(15) CH∗(M(P )) = 0.

Apparently we get non–unique connection matrices




· · · 1 · ·
· · · · 1 ·
· · · · · 1
· · · · · ·
· · · · · ·
· · · · · ·




,




· 1 · · · ·
· · · · · ·
· · · · · 1
· · · · 1 ·
· · · · · ·
· · · · · ·




,




· 1 · 1 · ·
· · · · 1 ·
· · · · · 1
· · · · 1 ·
· · · · · ·
· · · · · ·




,




· 1 · · · ·
· · · · · ·
· · · · · 1
· · · · 1 1
· · · · · ·
· · · · · ·




,

where each 0 is replaced by a dot. Maybe we didn’t provide enough Conley index data?
Variant 2: We retain the proposed order above, but add Conley index information

about the “transition”-interval {1′, 1′′} and the θ′′-interval {1′′, 3′′}. By construction, there
is a heteroclinic connection from i′′ → i′ with Conley index CH∗(M({i′, i′′})) = 0, i.e.
the Conley data we use additionally to (13) and (15) is

(16) CH∗(M({1′, 1′′})) = CH∗(M({1′′, 3′′})) = 0.

Explicit computations in the worksheet show that there are no connection matrices satis-
fying the above requirements. But due to Franzosa’s existence result [Franzosa, 1989,
Thm. 3.8] at least one connection matrix is always guaranteed. This inconsistency tells us
that our proposed order is not admissible, i.e. that it does not contain the flow-induced
order.

The strategy now is to enlarge the order, as a subset of P × P , to avoid inconsistency.
The following four possibilities 2′′ > 3′, 3′′ > 2′, 1′′ > 2′, 1′′ > 3′ are in question. The
last two can be ruled out immediately, because adding 1′′ > 2′ implies that {2′, 2′′} (and
{1′, 1′′}) is not anymore an interval, and adding 1′′ > 3′ implies that {3′, 3′′} is no longer
an interval. However, the sets {i′, i′′} are always intervals by construction.

Variant 3: We add 2′′ > 3′ to the generating relations and retain the enriched Conley

index information above (13), (15), and (16). Again we run into an inconsistency (no
connection matrix matches the data), which tells us that our proposed order is again not
admissible, i.e. that it does not contain the flow induced order.

Variant 4: The only possible enlargement left is the relation 3′′ > 2′. This indeed proves
that the flow-induced order >ϕ is generated by the relations (14) together with 3′′ > 2′.
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Our computations yield the unique connection matrix



· 1 · 1 · ·
· · · · 1 1
· · · · · 1
· · · · 1 1
· · · · · ·
· · · · · ·




.

Thus, the above inconsistency is resolved. Since furthermore ({2′}, {3′′}) ∈ I2(P, >ϕ) is a
pair of adjacent intervals and ∆(2′, 3′′) 6= 0 (cf. [Maier-Paape et al., 2007, Section 3,(C4)]),
the existence of a connecting orbit 3′′ → 2′ is proved. This connecting orbit was already
found in Franzosa’s original article (see [Franzosa, 1989, Example 6.2]). The line of
arguments provided above is nevertheless new.

5. The Cahn-Hilliard Equation Revisited

Here we pursue the discussion started in [Maier-Paape et al., 2007] of the Cahn-Hilliard

equation

ut = −∆(ε2∆u + f(u)) in Ω,

∂u

∂ν
=

∂∆u

∂ν
= 0 on ∂Ω,

(17)

where Ω = (0, 1)2 is the unit square, f(u) = u − u3, and ε > 0 is a parameter. The
Cahn-Hilliard equation is a gradient flow with respect to the van der Waals free
energy function

(18) Eε[u] :=

∫

Ω

(
ε2

2
|∇u|2 + F (u)

)
dx,

where F (u) = (u2− 1)2/4. The equilibria of the parametric Cahn-Hilliard equation are
described in [Maier-Paape et al., 2007, Section 4.2, Prop. 4.5].

The set of all functions on Ω satisfying the integral condition
∫
Ω

udx = m, for a fixed
mass m ∈ R, is invariant under the flow. The constant function u ≡ m is an equilibrium of
the Cahn-Hilliard equation, which we simply denote by m. We introduce the parameter
λ = 1/ε2.

5.1. Numerically Motived Hypotheses. Figure 7 is taken from [Maier-Paape et al., 2007,
Figure 23] and shows the bifurcation diagram of the equilibria for m = 0 and 0 < λ ≤ λ∗

4,0.
More precisely the numerically motivated hypotheses corresponding to this figure have
been summed up as (H1)’-(H6)’ in [Maier-Paape et al., 2007, Section 6.1].

In Figure 8 typical nodal lines of the equilibria occurring in the diagram in Figure 7 are
sketched.

Figure 9 shows the bifurcation diagram for m < 0 small in the range 0 < λ ≤ λ∗
4,m. Here

we assume numerically motivated hypotheses similar to (H1)’ - (H6)’ from [Maier-Paape et al., 2007,



20 MOHAMED BARAKAT AND STANISLAUS MAIER-PAAPE

Eǫ

λ = 1
ǫ2

λ1,0 λ2,0 λ∗
1,0 λ∗

2,0 λ∗
3,0 λ∗

4,0

M3,m=0

Mc0
i

d
0,∗
j

d
0,±
j

a
0,±
j ,b0,±

j

x
0
j

Σ2

Σ2

Σ1Σ1

Σ0

Σ0

Σ3
Σ3Σ2Σ0

Σ2

Σ1

d
0
j

Figure 7. Bifurcation diagram and energy values for m = 0

x
0
j , 4∗ d

0,∗
j , 4∗ d

0,±
j , 8∗ a

0,±
j ,b0,±

j , 16∗ c
0
i on Mc0

i
, 2∗

Figure 8. Pattern associated to the main branches of m = 0 and their multiplicity.

Subsection 6.1] and in the obvious way for m < 0 small adapted according to Figure 9.
For details cf. [Maier-Paape et al., 2008].

The nodal lines of the equilibria branches occurring in the energy diagram are sketched
in Figure 10 and 11.

5.2. The Range λ1,m < λ < λ2,m. For 0 ≤ m2 < 3
35

there exist nine equilibria

{xm
0 , xm

1 , xm
2 , xm

3 , dm
0 , dm

1 , dm
2 , dm

3 , m}

of the equation (17) subject to
∫
Ω

udx = m for λ1,m < λ < λ2,m as described in [Maier-Paape et al., 2007,
Subsections 2.2 and 2.3]. See Figure 9. We refer to the worksheet Cahn-Hilliard on the
homepage [Barakat et al., 2008] for the details of these computations and only indicate the
relevant input:

> P:=[ x0,x1,x2,x3, d0,d1,d2,d3, m];

The Conley indices of the nine equilibria (the xm
i ’s are stable, and the dm

i ’s resp. m are
saddle points with one resp. two unstable directions; cf. Prop. 3.1):

> CHp:=[ 0,0,0,0, 1,1,1,1, 2];
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Eǫ

λ = 1
ǫ2

λ1,m λ2,m
λ∗

1,m
λ∗

2,m λ∗
4,m

λ∗
3,m
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3,m

M3,m

c
m
i

d
m,−
j

d
m,+
j

d
m,∗
j

a
m,+
j

,b
m,+
j

a
m,−
j

,b
m,−
j

x
m
j Σ0

Σ3
Σ2Σ0

Σ0

Σ1

Σ1

Σ2

Σ2

d
m
j

}

}

}
Mcm

i

Figure 9. Partial bifurcation diagram and energy values for small m < 0

d
m,∗
2

d
m,−
2 d

m,+
2

Figure 10. d
m,−
2 and the saddle node branch (dm,∗

2 and d
m,+
2 ) for small m < 0

d
m,−
2a

m,−
2 b

m,−
2

Figure 11. d
m,−
2 bifurcates to a

m,−
2 and b

m,−
2 for small m < 0

The symmetry group of the dynamics
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m

x3

d2

d1
x1

d0

x0

d3

x2

is the dihedral group D8 := 〈(xm
0 , xm

1 , xm
2 , xm

3 )(dm
0 , dm

1 , dm
2 , dm

3 ), (xm
1 , xm

3 )(dm
0 , dm

3 )(dm
1 , dm

2 )〉:

> D8:=[ [[x0,x1,x2,x3],[d0,d1,d2,d3]], [[x1,x3],[d0,d3],[d1,d2]] ];

Now we interpret the Morse indices as abstract energy levels giving m > dm
i > xm

j .
Because of the D8-symmetry the xm

i ’s resp. dm
i ’s are on the same energy level (18) and

thus the xm
i ’s resp. dm

i ’s are not related among each other in the energy–induced, and hence
also in the flow–induced order. The energy–induced order:

> rel:=DefinePartialOrderByPotential(P,CHp,P);

rel := [[d0 , x0 ], [d1 , x0 ], [d2 , x0 ], [d3 , x0 ], [m, x0 ], [d0 , x1 ], [d1 , x1 ], [d2 , x1 ], [d3 , x1 ],

[m, x1 ], [d0 , x2 ], [d1 , x2 ], [d2 , x2 ], [d3 , x2 ], [m, x2 ], [d0 , x3 ], [d1 , x3 ], [d2 , x3 ],

[d3 , x3 ], [m, x3 ], [m, d0 ], [m, d1 ], [m, d2 ], [m, d3 ]]

To the Conley indices of the equilibria we only add the Conley index of the isolated
invariant set M(P ), which is a global attractor A

m
λ , depending on the mass m and the

parameter λ. By Prop. 3.2 the homology Conley index is CH∗(A
m
λ ) = Σ0:

> CH:=[op(zip((x,y)->x=y,P,CHp)),P=0];

As in [Barakat and Robertz, 2009, Example 7.3] we compute using conley the relevant
connection matrices, where now we additionally impose the “extra” dynamical condition
that for λ greater but close to λ1,m there are no connecting orbits between dm

1 and xm
0

(cf. [Maier-Paape et al., 2007, Lemma 2.2]):

> Con:=ConnectionMatrices(P,rel,CH,var,"Symmetry"=D8,
> "Extra"=[[d1,x0]=0]);









1 · · 1
1 1 · ·
· 1 1 ·
· · 1 1


 ,




1
1
1
1










This result coincides with [Maier-Paape et al., 2007, Prop. 4.5]. Contrary to the hyperbolic
notation for connection matrices used in Subsection 4.1 we prefer here the so-called standard
notation. The procedure ConnectionMatrices defaults to this notation if no other options
are provided. Each connection matrix is now returned as the tuple ∆ = (∆n)n=1,2,..., where
∆n : Cn(P )→ Cn−1(P ).
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Compared with [Barakat and Robertz, 2009, Example 7.3], the additional dynamical
condition used here gives a unique connection matrix (for λ greater but close to λ1,m).
And this remains true for all λ1,m < λ < λ2,m since the transition matrix group is trivial:

> Ts:=TransitionMatrices(P,rel,CHp,var);
[[[

1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
,

[
1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
, [ 1 ]

]]

Again, contrary to the hyperbolic notation for transition matrices used in Subsection 4.1
we use the standard notation. The procedure TransitionMatrices also defaults to this
notation if no other options are provided. Each transition matrix is returned as the tuple
T = (Tn)n=0,1,..., where Tn : Cn(P )→ Cn(P ).

5.3. The Range λ2,m < λ < λ∗
1,m. In this range1 two new equilibria cm

1 and cm
2 with

Morse index 2 bifurcate from the constant solution (see Figure 9):

> P:=[x0,x1,x2,x3, d0,d1,d2,d3, c0,c1, m];

The Morse index of the constant solution is now raised to 3, where m may stand for a
non-trivial isolated invariant set M3 = M3,m(λ) with Conley index Σ3 that contains the
trivial solution u ≡ m (cf. [Maier-Paape et al., 2007, Subsection 2.4,(H5)]):

> CHp := [0,0,0,0, 1,1,1,1, 2,2, 3];

The partial order (here we abuse the Morse indices as abstract energy levels to define an
energy induced order):

> rel:=DefinePartialOrderByPotential(P,CHp,P);

For general m the symmetry group is D8 as before the bifurcation, now also acting on the
two new equilibria cm

1 , cm
2 :

> D8 := [[[x0,x1,x2,x3],[d0,d1,d2,d3],[c0,c1]],
> [[x1,x3],[d0,d3],[d1,d2],[c0,c1]]];

For m = 0 the symmetry group is larger; multiplying with −1 is an additional symmetry:

> D8C2:= [ op(D8), [[x0,x2],[x1,x3],[d0,d2],[d1,d3],[c0,c1]] ];

Even for the m 6= 0, i.e. only using the D8-symmetry, we obtain a unique connection matrix
as in [Maier-Paape et al., 2007, Prop. 4.6]:

> CH:=[op(zip((x,y)->x=y,P,CHp)),P=0];

> Con0:=ConnectionMatrices(P,rel,CH,var,"Symmetry"=D8,
> "Extra"=[[d1,x0]=0]);









1 · · 1
1 1 · ·
· 1 1 ·
· · 1 1


 ,




1 1
1 1
1 1
1 1


 ,

[
1
1

]






1We refer to the worksheet CH[2m,1m_star] on the homepage [Barakat et al., 2008] for the details of
these computations
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Since this matrix is unique, computing with the bigger symmetry group cannot bring any
further restriction.

> Ts:=TransitionMatricesGenerators(P,rel,CHp,var,"Symmetry"=D8);

Ts :=

[[[
1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
,

[
1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
, [ 1 ·

· 1 ] , [ 1 ]

]]

As the transition matrix group is trivial, the above connection matrix remains unique on
the whole interval where this Morse decomposition exists.

5.4. The Range λ∗
1,m < λ < λ∗

2,m. Here we compute2 the matrices found in [Maier-Paape et al., 2007,
Section 5]. We discuss λ in the range λ∗

1,m < λ < λ∗
2,m as described in [Maier-Paape et al., 2007,

Subsections 2.2 and 2.3]. For |m| small there exist 18 equilibria3 and one non-trivial Morse

set corresponding to m as above:

{xm
0 , xm

1 , xm
2 , xm

3 , dm,−
0 , dm,−

1 , dm,−
2 , dm,−

3 , dm,+
0 , dm,+

1 , dm,+
2 , dm,+

3 , dm,∗
0 , dm,∗

1 , dm,∗
2 , dm,∗

3 ,

cm
0 , cm

1 , m}

of the Cahn-Hilliard equation:

> P:=[x0,x1,x2,x3, dm0,dm1,dm2,dm3, dp0,dp1,dp2,dp3,
> ds0,ds1,ds2,ds3, c0,c1, m];

The energy induced order for m = 0. Note that although the cm
i ’s and the dm,∗

j have the
same Morse index 2, the energy of the first ones is higher than the energy of the others
(see Figure 7):

> vm_0:=[0,0,0,0, 1,1,1,1, 1,1,1,1,
> 2,2,2,2, 2.5,2.5, 3];

The abstract energy level 2.5 of the cm
i ’s is used to define the partial order (our convention

is to choose the abstract energy levels in such a way, that its integer part equals its Morse

index):

> relm_0:=DefinePartialOrderByPotential(P,vm_0,P);

The energy induced order for m < 0 (for m < 0 all the dm,−
i have lower energy than all the

dm,+
i , but both have Morse index 1, see Figure 9):

> vm_neg:=[0,0,0,0, 1,1,1,1, 1.5,1.5,1.5,1.5,
> 2,2,2,2, 2.5,2.5, 3];

Note that the energy induced order for m < 0 is admissible for m = 0, too.

> relm_neg:=DefinePartialOrderByPotential(P,vm_neg,P);

The direct factor C2 acts by −1 on the set of functions. It only exists in the m = 0 case:

2We refer to the worksheet CH_On_Square on the homepage [Barakat et al., 2008] for the details of these
computations

3If one doesn’t resolve the bifurcation at cm
i , similar results hold true in the range λ∗

2,m < λ < λ∗

3,m.
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> D8C2:=
> [
> [[x0,x1,x2,x3],[dm0,dm1,dm2,dm3],[dp0,dp1,dp2,dp3],
> [ds0,ds1,ds2,ds3],[c0,c1]],
> [[x1,x3],[dm0,dm3],[dm1,dm2],[dp0,dp3],[dp1,dp2],
> [ds0,ds3],[ds1,ds2],[c0,c1]],
> [[x0,x2],[x1,x3],[dm0,dp2],[dm1,dp3],[dm2,dp0],[dm3,dp1],
> [ds0,ds2],[ds1,ds3],[c0,c1]]
> ];

In the m 6= 0 case the symmetry is broken from D8 × C2 down to D8:

> D8:=D8C2[1..2];

The Conley indices of the respective equilibria (for all |m| small):
> CHp:=[0,0,0,0, 1,1,1,1, 1,1,1,1,
> 2,2,2,2, 2,2, 3];

We only add the condition saying M(P ) is a global attractor:

> CH:=[op(zip((x,y)->x=y,P,CHp)),P=0];

5.4.1. The case m = 0. Here we discuss the m = 0 case. In the following computation
the condition a = 1 ([dm0,x0]=1) is algebraically equivalent to b = 0 ([dm1,x0]=0). The
condition a = 1 follows from a dynamical argument near the bifurcation point λ = λ∗

1,0,
cf. [Maier-Paape et al., 2007, Proof of Thm. 5.3] (see [Maier-Paape et al., 2007, (34) and

(35)] for the definition of the constants a, b, β̃, γ̃, α̃, s). The other two dynamical con-

ditions β̃ = γ̃ = 0 ([ds1,dp0]=[ds2,dp0]=0) are dictated by [Maier-Paape et al., 2007,
Prop. 5.2], where the role of the tilde and non-tilde variables is exchanged due to [Maier-Paape et al., 2007,
Lemma. 5.1] and m < 0:

> Con0:=ConnectionMatrices(P,vm_0,CH,var,"Symmetry"=D8C2,
> "Extra"=[[dm1,x0]=0,[ds1,dp0]=0,[ds2,dp0]=0]);
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6
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6
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6
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1 · · · 1 ·
· 1 · · · 1
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· · · 1 · 1
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· · · 1 1 ·

3

7

7

7

7

7

7
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7

7
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6

6

6

6

4

1
1
1
1
1
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7
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7
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5
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7
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6
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6
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6

6
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3

7
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6
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The two connection matrices obtained agree with [Maier-Paape et al., 2007, Thm. 5.3].
Note that our computation shows that one doesn’t need to impose the affine conditions
α̃ = s = 1 in [Maier-Paape et al., 2007, Prop. 5.2]!
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The non-uniqueness of the output of ConnectionMatrices can have dynamical reasons
as in Subsection 4.1, or can be due to the incompleteness of the provided dynamical data
as in Remark 3.8. Hence, the output of ConnectionMatrices might very well be a strict
super set of the set of connection matrices. Here and in the following we therefore call the
output of ConnectionMatrices the set of possible connection matrices.

Based on non-rigorous numerical calculations of the very specific heteroclinic orbit be-
tween c0

0 and d0,+
0 , we are led to the assumption that only the second matrix in Con0 is a,

and hence the unique connection matrix [Maier-Paape et al., 2007, Cor. 5.4].

For m = 0 the transition matrix group is the cyclic group C2 with the generator:

> Ts0:=TransitionMatricesGenerators(P,vm_0,CHp,var,"Symmetry"=D8C2);





[

1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
,




1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1


 ,

[ 1 · · · 1 1
· 1 · · 1 1
· · 1 · 1 1
· · · 1 1 1
· · · · 1 ·
· · · · · 1

]
, [ 1 ]







The transition matrix group interchanges the two connection matrices as supposed by
[Maier-Paape et al., 2007, Thm. 5.3]:

> Orb0:=Orbits(Ts0,Con0,var,"conjugation"):
> map(nops,Orb0);

[2]

The last line means that acting with the transition matrix group on the set of connection
matrices we get a single orbit of length 2.

5.4.2. The case m < 0 small. Now we compute the transition matrices for m ≤ 0. Here we
use the energy induced order from m < 0, which is, as noted above, admissible for m = 0,
too.

> Ts:=TransitionMatricesGenerators(P,vm_neg,CHp,var,"Symmetry"=D8);






[

1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
,




1 · · · 1 · · ·
· 1 · · · 1 · ·
· · 1 · · · 1 ·
· · · 1 · · · 1
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1


 ,

[ 1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1

]
, [ 1 ]


 ,



[

1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
,




1 · · · · 1 · 1
· 1 · · 1 · 1 ·
· · 1 · · 1 · 1
· · · 1 1 · 1 ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1


 ,

[ 1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1

]
, [ 1 ]


 ,



[

1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
,




1 · · · · · 1 ·
· 1 · · · · · 1
· · 1 · 1 · · ·
· · · 1 · 1 · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1


 ,

[ 1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1

]
, [ 1 ]


 ,



[

1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
,




1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1


 ,

[ 1 · · · 1 ·
· 1 · · · 1
· · 1 · 1 ·
· · · 1 · 1
· · · · 1 ·
· · · · · 1

]
, [ 1 ]


 ,



[

1 · · ·
· 1 · ·
· · 1 ·
· · · 1

]
,




1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1


 ,

[ 1 · · · · 1
· 1 · · 1 ·
· · 1 · · 1
· · · 1 1 ·
· · · · 1 ·
· · · · · 1

]
, [ 1 ]






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The transition matrix group is thus generated by 5 elements. It is an abelian group (the
orbits of the generators under conjugation are one point sets) of order 32. Since each
generator has order 2, we conclude that the transition matrix group is isomorphic to the
elementary abelian group C5

2 .

According to [Franzosa and Mischaikow, 1998] or [Maier-Paape et al., 2007, Prop. 3.5] the
set of connection matrices in the range m ≤ 0 must be generated by conjugating the two
for m = 0 with the transition matrix group given above. We get 32 such matrices. These
matrices are indeed possible connection matrices for m = 0, not taking into account the
full symmetry group D8 × C2. Similarly they are connection matrices for m < 0, and as
we see in the worksheet, they are invariant under the symmetry group D8 for m < 0.

First we compute the connection matrices for m < 0, only using the three homogeneous
dynamical restrictions as above. All three are due to [Maier-Paape et al., 2007, Prop. 5.2].

> ConH:=ConnectionMatrices(P,vm_neg,CH,var,"Symmetry"=D8,
> "Extra"=[[dm1,x0]=0,[ds1,dp0]=0,[ds2,dp0]=0]);

Since we didn’t plug in all 6 dynamical conditions of [Maier-Paape et al., 2007, Prop. 5.2],
but only three homogeneous among them, we obtain twice as much as the 32 possible con-
nection matrices from above. Surprisingly, only one of the extra affine condition suffices to
obtain the correct number 32. If we plug in all 6 conditions right away, then the compu-
tation becomes considerably faster, and we again end up with our 32 possible connection
matrices.

5.4.3. Further reduction using dynamical arguments (still m < 0 small). In the hyperbolic
context, one can use the following ad hoc argument for index 1 equilibria reducing the num-
ber of possible connection matrices even further (this is derived in [Maier-Paape et al., 2007,
Section 5.3] on a particular example, but applies to more general situations as described
below). We will show in 5.4.4 how one can reduce this to a conventional algebraic Conley

index argument.
This ad hoc argument starts with the following observation: since there is only one

unstable direction, one has exactly two connecting orbits starting from an index 1 equilib-
rium.

In this example we consider the four index 1 equilibria dm,+
i for m < 0. Shortly after

the bifurcation (m = 0) → (m < 0) one can assume that the dm,+
i ’s and the xm

j ’s are still
pairwise adjacent in the flow induced order (although not anymore in the energy induced
order), since this was the case for m = 0 (cf. [Mischaikow and Mrozek, 2002, Prop. 1.1]).

Consider one q := dm,+
i for a fixed i and the set of xm

j ’s (j = 0, . . . , k = 3), which are all
index 0 equilibria, where possible connections have to considered. For k > 2 there are in
general four cases to distinguish. Note that the below argument applies to general index
Σ1 to index Σ0 connections:

Case I: There are three or more 1-entries in the connection matrix between q and the
xm

j ’s. This gives three or more heteroclinic connections starting at q, contradicting
the above argument (cf. [McCord, 1988]).
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Case II: There are precisely two 1-entries in the connection matrix between q and
the xm

j ’s. This is possible and would mean that there are two heteroclinic orbits
that start at q and go to different xm

j ’s.
Case III: There is a single 1-entry in the connection matrix between q and the xm

j ’s.
This would yield an uneven number of heteroclinic orbits starting at q, which is
again impossible.

Case IV: There is no 1-entry in the connection matrix between q and the xm
j ’s. This

is in principle possible, but would mean that the two heteroclinic orbits starting
at q go to the same xm

j (characteristic 2). This can be ruled out in case the
isotropy subgroup of q doesn’t fix any of the xm

j ’s, since then the two heteroclinic
orbits from above get mapped by the symmetry operation to at least two other
heteroclinic orbits, which results in four or more heteroclinic orbits starting at q.
Again a contradiction.

This helps us to reduce the number of possible connection matrices further. Case I rules
out connection matrices like the following one:

> map(Involution,Con[3],var);


[

1 · · 1 1 1 1 1
1 1 · · 1 1 1 1
· 1 1 · 1 1 1 1
· · 1 1 1 1 1 1

]
,




· 1 · 1 1 1
1 · 1 · 1 1
· 1 · 1 1 1
1 · 1 · 1 1
1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·


 ,

[ ·
·
·
·
1
1

]


There are 8 such connection matrices (out of a total of 32). Now consider for instance:

> map(Involution,Con[1],var);


[

1 · · 1 · · · ·
1 1 · · · · · ·
· 1 1 · · · · ·
· · 1 1 · · · ·

]
,




· · · · 1 1
· · · · 1 1
· · · · 1 1
· · · · 1 1
1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·


 ,

[ ·
·
·
·
1
1

]


In order to apply Case III from above we have to compute the orbit of connections starting
at dm,+

0 and see that the isotropy group StabD8
(dm,+

0 ) ≤ D8 doesn’t fix any of the xm
j ’s:

> Orbits(D8,[[dp0,x0]]); Orbits(D8,[[dp0,x2]]);

[[[dp0 , x0 ], [dp1 , x1 ], [dp3 , x0 ], [dp2 , x2 ], [dp2 , x3 ], [dp0 , x1 ], [dp3 , x3 ], [dp1 , x2 ]]]

[[[dp0 , x2 ], [dp1 , x3 ], [dp3 , x2 ], [dp2 , x0 ], [dp2 , x1 ], [dp0 , x3 ], [dp3 , x1 ], [dp1 , x0 ]]]

There are again 8 such connection matrices (out of a total of 32). Hence, we are left with 16
relevant connection matrices. Note that this is still a superset of the 8 connection matrices
obtained in [Maier-Paape et al., 2007, Theorem 5.6]. The argument needed to get down to
8 connection matrices is still unavoidable in the alternative algebraic approach below, and
we will explain it there.

5.4.4. Replacing the above dynamical argument by an algebraic argument. In the following
we show how the argument explained above can be replaced by a conventional algebraic ar-
gument using the Conley index of the interval J := {xm

0 , xm
1 , xm

2 , xm
3 , dm,+

0 , dm,+
1 , dm,+

2 , dm,+
3 }.
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For m = 0 the set J is an interval and therefore M(J) is an isolated invariant set
[Mischaikow and Mrozek, 2002, Prop. 2.12]:

> IsInterval(J,P,relm_0);

true

Using conley we compute that for m = 0 the interval J has the index H∗∆(J) =
(Z/2Z, Z/2Z, 0, 0, . . .) for both connection matrices in Con0 of Subsection 5.4.1:

> HomologyModules(IntervalChainComplex(Con0[1],P,J,CHp,var),var);
> HomologyModules(IntervalChainComplex(Con0[2],P,J,CHp,var),var);

Hence we conclude that CH∗(M(J)) = (Z/2Z, Z/2Z, 0, 0, . . .).
According to [Mischaikow and Mrozek, 2002, Prop. 1.1] the isolated invariant set M(J)

survives for |m| small and by [Mischaikow and Mrozek, 2002, Theorem 3.10] its index re-
mains unchanged. Note that therefore J survives as an interval in the flow induced order
in the passage from m = 0 to m negative and small. In the energy induced order, this is
no longer the case:

> IsInterval(J,P,relm_neg);

false

But since the energy induced order at m = 0 is an admissible ordering for m < 0 small,
we use it in our computation.

> CH_J := [op(CH),J=[1,1]];

With this enriched Conley index data we find 16 connection matrices. We will use the
affine conditions a = 1 ([dm0,x0]=1), α̃ = 1 ([ds0,dp0]=1), and s = 1 ([m,c0]=1) from
[Maier-Paape et al., 2007, Prop. 5.2]. The input syntax of affine conditions (opposed to
linear conditions) is more involved due to the graded structure of ∆. The correct input
for the affine condition [dm0,x0]=1 is [dm0,x0]=[ [[1]],[[0]],[[0]] ], i.e. a 1 in the
matrix ∆1 : C1(P )→ C0(P ) at the position (dm,−

0 , xm
0 ).

> Con16:=ConnectionMatrices(P,vm_0,CH_J,var,"Symmetry"=D8,
> "Extra"=[[dm1,x0]=0,[ds1,dp0]=0,[ds2,dp0]=0,
> [dm0,x0]=[ [[1]],[[0]],[[0]] ],[ds0,dp0]=[ [[0]],[[1]],[[0]] ],
> [m,c0]=[ [[0]],[[0]],[[1]] ]]):

Thus, we have replaced the ad hoc argument in 5.4.3 by a conventional Conley index
argument.

In the following we explain in some detail the argument used in [Maier-Paape et al., 2007,
Section 5.3] to get further down to 8 connection matrices in the case m < 0 small:

First note that the computation of the generators of the transition matrix group in
the conley package is done in the following way: Over Z/2Z the diagonal entries of the
invertible lower triangular matrices must be equal to 1. After subtracting the identity the
resulting matrices are completely characterized by being strict lower triangular of degree 0,
which are invariant under the symmetry group for m < 0. In order to get a generating set
of the group, we substitute a single 1 at an admissible position (p, q) (i.e. if p > q) and add
further 1’s at (admissible) positions (p′, q′), iff (p′, q′) lies in the orbit of (p, q) under the
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symmetry group. These generators are for the Conley index theory canonical, since they
describe a bifurcation of a single switching heteroclinic connection (cf. [Franzosa, 1989]),
see 5.4.2, where the canonical generators have been computed.

We exclude those canonical generators, that take connection matrices at m = 0 to those
connection matrices ∆̃ violating the Conley index condition H∗∆̃(J) = CH∗(M(J)) for
the isolated invariant set M(J). These are explicitly the first and third generator in Ts

of Subsection 5.4.2. The remaining three canonical generators generate the elementary
abelian group C3

2 of order 8. Applying this transition matrix group to the two connec-
tion matrices at m = 0 we get the 8 possible connection matrices for m < 0 small of
[Maier-Paape et al., 2007, Subsection 5.3].

The procedure TransitionMatricesOfBranching automatizes all the above steps nec-
essary to compute the three relevant canonical generators of the transition matrix group:

> obj:=P,vm_0,vm_neg,CHp,CH,CH_J,var,"Symmetry"=D8C2,
> "Symmetry"=D8,"Extra"=[[dm1,x0]=0,[ds1,dp0]=0,[ds2,dp0]=0]:
> G:=TransitionMatricesOfBranching(obj);

The extra conditions are only used to calculate Con0 internally. Applying the above three
relevant canonical transition matrix generators to the two connection matrices at m = 0
we obtain the 8 possible connection matrices mentioned above:

> Orbits(G,Con0,var,"conjugation");

The above two steps can finally be summed up in the procedure ConnectionMatricesOf-

Branching taking the same input as TransitionMatricesOfBranching:

> ConB:=ConnectionMatricesOfBranching(obj);

There are two remarkable issues about J :

(1) J is an interval for m = 0, which is no longer an interval for m < 0 in the energy
induced orders.

(2) CH∗(M(J)) = H∗∆(J) for all possible connection matrices ∆ at m = 0.

Note, that we have verified (2) even for the (super) set Con0 of possible connection
matrices (cf. Subsection 5.4.1). Therefore in this situation we don’t even need to a priori
know the Conley index CH∗(M(J)) because it can automatically be provided by conley.

Definition 5.1 (Energy induced bifurcation interval). We call such intervals energy in-
duced bifurcation intervals. The relevant canonical generators of the transition matrix
group are those which respect the Conley index data for all possible bifurcation intervals.

In this subsection it sufficed to consider only one energy induced bifurcation interval,
namely J .

5.5. The Range λ∗
2,m < λ < λ∗

3,m. Using the numerically motived hypotheses for m = 0
and m < 0 small stated in Subsection 5.1 above, analogously to corollary [Maier-Paape et al., 2007,
Cor. 6.2], all the connection matrices from the previous Subsection remain unchanged, only
the branches corresponding to cm

i get replaced by the isolated invariant set Mcm
i
.
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5.6. The Range λ∗
3,m < λ < λ∗

4,m. In [Maier-Paape et al., 2007, Section 6] only the case
m = 0 was studied. Here we compute the connection matrices and transition matrices also
for m < 0 small. We discuss λ in the range λ∗

3,m ≤ λ∗,+
3,m < λ < λ∗

4,m as shown in Figure 9.
For |m| small there exist 32 equilibria and 3 non-trivial Morse sets

{xm
0 , xm

1 , xm
2 , xm

3 , dm,−
0 , dm,−

1 , dm,−
2 , dm,−

3 , dm,+
0 , dm,+

1 , dm,+
2 , dm,+

3 ,

am,−
0 , bm,−

0 , am,−
1 , bm,−

1 , am,−
2 , bm,−

2 , am,−
3 , bm,−

3 , am,+
0 , bm,+

0 , am,+
1 , bm,+

1 , am,+
2 , bm,+

2 , am,+
3 , bm,+

3 ,

dm,∗
0 , dm,∗

1 , dm,∗
2 , dm,∗

3 , Mcm
0
, Mcm

1
, M3,m}

of the Cahn-Hilliard equation. Note that in the range λ∗
3,m < λ∗,+

3,m the branches

am,+
i , bm,+

j do not yet exist (m < 0 small), cf. [Maier-Paape et al., 2008]. The Morse

sets Mcm
0
, Mcm

1
, M3,m related to c0, c1, m will not be resolved any further, i.e. although

there are bifurcations from cm
i and the the constant solution m, we keep the main branches

including everything emerging from it as a big Morse set:
> P:=[x0,x1,x2,x3, dm0,dm1,dm2,dm3, dp0,dp1,dp2,dp3,
> am0,bm0,am1,bm1,am2,bm2,am3,bm3, ap0,bp0,ap1,bp1,ap2,bp2,ap3,bp3,
> ds0,ds1,ds2,ds3, c0,c1, m];

5.6.1. The case m = 0. The following list of abstract energy values is used to internally
generate the energy induced order for m = 0:

> vm_0:=[0,0,0,0, 0.5,0.5,0.5,0.5, 0.5,0.5,0.5,0.5,
> 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
> 2,2,2,2, 2.5,2.5, 3];

The energy induced order for m < 0 (for m < 0 the dm,−
i ’s have lower energy than the

dm,+
i ’s, and similarly am,−

i , bm,−
i lie below am,+

i , bm,+
i ):

> vm_neg:=[0,0,0,0, 0.5,0.5,0.5,0.5, 0.7,0.7,0.7,0.7,
> 1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,
> 2,2,2,2, 2.5,2.5, 3];

Again, the energy induced order for m < 0 is admissible for m = 0, too.

The direct factor C2 acts by −1 on the set of functions. It only exists in the m = 0 case:
> D8C2:=
> [
> [[x0,x1,x2,x3],[dm0,dm1,dm2,dm3],[dp0,dp1,dp2,dp3],
> [am0,am1,am2,am3],[ap0,ap1,ap2,ap3],[bm0,bm1,bm2,bm3],[bp0,bp1,bp2,bp3],
> [ds0,ds1,ds2,ds3],[c0,c1]],
> [[x1,x3],[dm0,dm3],[dm1,dm2],[dp0,dp3],[dp1,dp2],
> [am0,bm3],[am1,bm2],[am2,bm1],[am3,bm0],[ap0,bp3],[ap1,bp2],[ap2,bp1],[ap3,bp0],
> [ds0,ds3],[ds1,ds2],[c0,c1]],
> [[x0,x2],[x1,x3],[dm0,dp2],[dm1,dp3],[dm2,dp0],[dm3,dp1],
> [am0,ap2],[am1,ap3],[am2,ap0],[am3,ap1],[bm0,bp2],[bm1,bp3],[bm2,bp0],[bm3,bp1],
> [ds0,ds2],[ds1,ds3],[c0,c1]]
> ];

In the m 6= 0 case the symmetry is broken from D8 × C2 down to D8:

> D8:=D8C2[1..2];

The Conley indices of the respective Morse sets (for all |m| small):
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> CHp:=[0,0,0,0, 0,0,0,0, 0,0,0,0,
> 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
> 2,2,2,2 ,2,2, 3];

Again, we only add the condition that we are dealing with a global attractor:

> CH:=[op(zip((x,y)->x=y,P,CHp)),P=0];

Here we discuss the m = 0 case. Here we only use the homogeneous conditions of
[Maier-Paape et al., 2007, Thm. 6.3], i.e. a = c = d = t = u = v = w = x = y =
z = β = γ = δ = 0. Note that the condition a = 0 is related to the assumption of a
heteroclinic connection from b0,−

0 to x0
0 (i.e. b = 1, cf. [Maier-Paape et al., 2007, (53)]):

> EXTRA_CONDITIONS0:=
> [
> [am0,x0]=0,
> [am1,x0]=0,[bm1,x0]=0,
> [am1,dm0]=0,[bm1,dm0]=0,[am2,dm0]=0,
> [ap0,dm0]=0,[ap1,dm0]=0,[bp1,dm0]=0,[ap2,dm0]=0,
> [ds1,am0]=0,[ds2,am0]=0,[ds3,am0]=0
> ];

Our computations
> Con0:=ConnectionMatrices(P,vm_0,CH,var,
> "Extra"=EXTRA_CONDITIONS0, "Symmetry"=D8C2):

yields two matrices:










· 1 · · · · 1 · · 1 · · · · 1 ·
1 · · 1 · · · · 1 · · 1 · · · ·
· · 1 · · 1 · · · · 1 · · 1 · ·
· · · · 1 · · 1 · · · · 1 · · 1
1 1 · · · · · · · · · · · · · ·
· · 1 1 · · · · · · · · · · · ·
· · · · 1 1 · · · · · · · · · ·
· · · · · · 1 1 · · · · · · · ·
· · · · · · · · 1 1 · · · · · ·
· · · · · · · · · · 1 1 · · · ·
· · · · · · · · · · · · 1 1 · ·
· · · · · · · · · · · · · · 1 1




,




1 · · · 1 ·
1 · · · 1 ·
· 1 · · · 1
· 1 · · · 1
· · 1 · 1 ·
· · 1 · 1 ·
· · · 1 · 1
· · · 1 · 1
1 · · · · 1
1 · · · · 1
· 1 · · 1 ·
· 1 · · 1 ·
· · 1 · · 1
· · 1 · · 1
· · · 1 1 ·
· · · 1 1 ·




,

[ 1
1
1
1
1
1

]




,







· 1 · · · · 1 · · 1 · · · · 1 ·
1 · · 1 · · · · 1 · · 1 · · · ·
· · 1 · · 1 · · · · 1 · · 1 · ·
· · · · 1 · · 1 · · · · 1 · · 1
1 1 · · · · · · · · · · · · · ·
· · 1 1 · · · · · · · · · · · ·
· · · · 1 1 · · · · · · · · · ·
· · · · · · 1 1 · · · · · · · ·
· · · · · · · · 1 1 · · · · · ·
· · · · · · · · · · 1 1 · · · ·
· · · · · · · · · · · · 1 1 · ·
· · · · · · · · · · · · · · 1 1




,




1 · · · · 1
1 · · · · 1
· 1 · · 1 ·
· 1 · · 1 ·
· · 1 · · 1
· · 1 · · 1
· · · 1 1 ·
· · · 1 1 ·
1 · · · 1 ·
1 · · · 1 ·
· 1 · · · 1
· 1 · · · 1
· · 1 · 1 ·
· · 1 · 1 ·
· · · 1 · 1
· · · 1 · 1




,

[ 1
1
1
1
1
1

]






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These two connection matrices are possible connection matrices for m = 0 in the range
λ∗

3,0 < λ < λ∗
4,0. The result agrees with [Maier-Paape et al., 2007, Thm. 6.3]. Note that

our computation shows that one doesn’t need to impose any of the affine conditions stated
in the Theorem!

Now we compute the transition matrices for m = 0 and variable λ with λ∗
3,0 < λ < λ∗

4,0.
Using

> Ts0:=TransitionMatricesGenerators(P,vm_0,CHp,var,"Symmetry"=D8C2):

we obtain three generators, but according to [Maier-Paape et al., 2007, Proof of Thm. 6.3]
the first two transition matrices can be ruled out by an easy attractor argument. The
remaining transition matrix

[
Id12×12, Id16×16,

[ 1 · · · 1 1
· 1 · · 1 1
· · 1 · 1 1
· · · 1 1 1
· · · · 1 ·
· · · · · 1

]
, Id1×1

]

permutes the above two connection matrices in Con0.

5.6.2. Preparing the transition from m = 0 to m < 0. Here we intend to use the algebraic
argument introduced in Subsection 5.4.4 to filter out the relevant canonical generators of
the transition matrix group, without further use of dynamical arguments. In order to do
so we give several bifurcation intervals:

The following set J1 containing index 1 and index 2 equilibria is an energy induced
bifurcation interval (i.e. not an interval in the energy induced order for m < 0, but one for
m = 0). Hence in the flow induced order it remains an interval for m < 0 small:

> J1:=[am0,bm0,am1,bm1,am2,bm2,am3,bm3, ds0,ds1,ds2,ds3];

The groups H∗∆(J1) coincide for both possible connection matrices ∆ in Con0 and are
equal to (0, (Z/2Z)4, 0, 0, . . .). Hence, CH∗(M(J1)) = (0, (Z/2Z)4, 0, 0, . . .).

The following set J2 containing index 0 and index 1 equilibria is also a bifurcation interval
from m = 0 to m < 0, which again remains an interval in the flow induced order for m < 0
small :

> J2:=[dm0,dm1,dm2,dm3, ap0,bp0,ap1,bp1,ap2,bp2,ap3,bp3];

Again, the groups H∗∆(J2) coincide for both possible connection matrices in Con0 and are
equal to ((Z/2Z)4, (Z/2Z)8, 0, 0, . . .). Hence, CH∗(M(J2)) = ((Z/2Z)4, (Z/2Z)8, 0, 0, . . .).

The same is true for the following interval J3 and the Conley index of the isolated invariant
set M(J3) is (0, (Z/2Z)4, 0, 0, . . .):

> J3:=[dm0,dm1,dm2,dm3, am0,bm0,am1,bm1,am2,bm2,am3,bm3];

Finally, the same applies to the following set J4 and the Conley index of M(J4) is
(0, (Z/2Z)4, 0, 0, . . .):

> J4:=[dp0,dp1,dp2,dp3, ap0,bp0,ap1,bp1,ap2,bp2,ap3,bp3];

Our goal is to find connection matrices for m < 0 small satisfying the extra index conditions
imposed by the above four intervals:
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> CH_J := [ op(CH), J1=[ [1], [[0, 0, 0, 0]] ],
> J2=[ [[0, 0, 0, 0]], [[0, 0, 0, 0, 0, 0, 0, 0]] ],
> J3=[ [1], [[0, 0, 0, 0]] ], J4 = [ [1], [[0, 0, 0, 0]] ] ];

The syntax in J1=[ [1], [[0, 0, 0, 0]] ] is derived from

CH∗(M(J1)) = (0 = (Z/2Z)/1(Z/2Z), (Z/2Z)4 =
⊕

i=1,...,4

(Z/2Z)/0(Z/2Z), 0, 0, . . .).

5.6.3. The case m < 0. In the following we compute the transition matrices for the passage
from m = 0 with symmetry group D8 × C2 to m < 0 small with symmetry group D8,
excluding those canonical generators, that take connection matrices in Con0 at m = 0
to those violating the Conley index conditions CH∗(M(J)) of the Morse sets M(J) for
J ∈ J1, J2, J3, J4 (note that the extra conditions are only used to calculate Con0):

> obj:=P,vm_0,vm_neg,CHp,CH,CH_J,var,
> "Symmetry"=D8C2,"Symmetry"=D8,"Extra"=EXTRA_CONDITIONS0:

> G:=TransitionMatricesOfBranching(obj);

We obtain 6 canonical generators for the transition matrix group. Originally 17 canonical
generators were computed and 11 have been ruled out, by the additional interval conditions
stated above. Internally the procedure TransitionMatricesOfBranching computed the
connection matrices for m = 0 with the large symmetry group D8 × C2. After that it
computed the canonical generators of the transition matrix group for the passage from
m = 0 to m < 0 small (the symmetry is broken to D8). Then it applied each such
generator to the m = 0 connection matrices and checked, whether the complete orbit
satisfies the additional index conditions for the intervals J1, . . . , J4. Additionally, it can be
shown by leaving out the conditions for the intervals J3 and J4 that J1 and J2 suffice to
obtain the six matrices.

The transition matrix group is elementary abelian of order 64. Applying the transition
matrix group G to the two connection matrices at m = 0 we get a transitive set containing
64 connection matrices, which constitute possible connection matrices for m < 0 small:

> Orbits(G,Con0,var,"conjugation"):

The above two steps can finally be summed up in the procedure ConnectionMatricesOf-

Branching with the same input as TransitionMatricesOfBranching:

> ConB:=ConnectionMatricesOfBranching(obj);

We suggest further numerical studies to verify specific heteroclinic connections, in order to
eventually decide which of the 64 so far obtained possible connection matrices is the one.
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